
 

 

 

 

 

 

 

For:  

National Institute for Congestion Reduction 

University of South Florida 

Center for Urban Transportation Research | University of South Florida 

 

4202 E. Fowler Avenue, ENG030, Tampa, FL 33620-5375 

nicr@usf.edu    

Date 

Proactive Congestion 
Management 

Sisinnio Concas 

Mohsen Kamrani 

Vishal C. Kummetha 

 

 
NATIONAL INSTITUTE FOR 
CONGESTION REDUCTION 
 

FINAL REPORT 

31st July 2021 

mailto:nicr@usf.edu


 

 

 

 
ii 

DISCLAIMER 
 

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy 
of the information presented herein. This document is disseminated in the interest of information exchange. 
The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use 
thereof.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 
iii 

Technical Report Documentation Page 

 

 
 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

   

4. Title and Subtitle 5. Report Date 

Proactive Congestion Management November 23, 2021 

6. Performing Organization Code 

 

7. Author(s) Vishal Kummetha, Sisinnio Concas, Mohsen Kamrani 8. Performing Organization Report No. 

  

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Center for Urban Transportation Research 
University of South Florida 
4202 E. Fowler Ave, CUT 100 
Tampa, FL 33620 

 

11. Contract or Grant No. 

69 69A3551947136 

A3551947136 

 

69A3551947136 

 

12. Sponsoring Organization Name and Address 

U.S. Department of Transportation, University Transportation Centers  
1200 New Jersey Avenue, SE 
Washington, DC 20590 
United States 
 

13. Type of Report and Period Covered 

  

14. Sponsoring Agency Code 

 

15. Supplementary Notes 

  

16. Abstract 

This report details the development and implementation of a method to proactively detect and mitigate congestion on freeways and 
arterials. To accomplish this goal, the research utilizes data fusion between conventional sources, such as radar detectors and traditional 
probe-based data, with newer sources, such as Bluetooth and connected vehicle (CV) data, to identify conditions that signal impending 
congestion. Data-driven and signal processing techniques are explored and developed to produce an algorithm that relies on near-real- or 
real-time traffic measurements capable of generating predictions proactively, using complex and often subtle factors that trigger congestion. 
The algorithm is validated and calibrated using traffic and other relevant data from comparable roadway facilities located in Florida and 
Texas. The algorithm is robust enough to function on both traditional and CV-based datasets and provides distinction between four intensity 
levels of congestion. The algorithm is applied within a microsimulation model to test the effectiveness of congestion mitigation strategies 
ranging from speed harmonization to dynamic rerouting, implemented individually and simultaneously. Performance measurement 
benchmarks show how these strategies prove to be effective in proactively reducing recurring and non-recurring congestion while providing 
additional safety benefits. Finally, this project demonstrates the clear advantage of using CV-based travel time estimates to calibrate 
microsimulation models over fixed point-based derivations of travel time from spot speeds. 

17. Key Words 18. Distribution Statement 

Proactive management, recurring congestion, non-recurring congestion  

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price 

Unclassified. Unclassified. 77  



 

 

 

 
iv 

Table of Contents 

 

DISCLAIMER ............................................................................................................................................................... ii 

Table of Contents ..................................................................................................................................................... iv 

Tables ....................................................................................................................................................................... vi 

Figures ...................................................................................................................................................................... vi 

List of Abbreviations ............................................................................................................................................... viii 

Executive Summary ................................................................................................................................................... 1 

1. Introduction ....................................................................................................................................................... 2 

1.1. Objectives .................................................................................................................................................. 2 

1.2. Outline ....................................................................................................................................................... 3 

2. Literature Review .............................................................................................................................................. 3 

2.1. Congestion on Freeways ........................................................................................................................... 3 

2.2. Real-time Congestion Prediction.............................................................................................................10 

2.3. Active Traffic and Demand Management (ATDM) Strategies .................................................................13 

2.3.1. Driver Alerts.....................................................................................................................................13 

2.3.2. Speed Harmonization ......................................................................................................................14 

2.3.3. Variable Message Signs (VMS) ........................................................................................................14 

2.3.4. Ramp Metering................................................................................................................................14 

2.3.5. Incident Detection ...........................................................................................................................15 

2.3.6. Dynamic Re-routing and Pre-travel Information ............................................................................15 

2.3.7. Speed Feedback Signs .....................................................................................................................16 

3. Methodology ...................................................................................................................................................16 

3.1. Data Compatibility and Preprocessing ....................................................................................................16 

3.2. Facility Description ..................................................................................................................................19 

3.2.1. Florida ..............................................................................................................................................19 

3.2.2. Texas ................................................................................................................................................21 

3.3. Data Fusion ..............................................................................................................................................22 

3.4. Developing the Congestion Detection Algorithm ...................................................................................25 

4. Results and Discussion ....................................................................................................................................31 

4.1. Congestion Detection Algorithm .............................................................................................................31 

4.1.1. Algorithm Validation .......................................................................................................................31 



 

 

 

 
v 

4.1.2. Approach Limitations ......................................................................................................................35 

4.2. Microsimulation ......................................................................................................................................36 

4.2.1. Baseline Geometry ..........................................................................................................................36 

4.2.2. Simulation Calibration .....................................................................................................................37 

4.2.3. Congestion Mitigation .....................................................................................................................42 

4.2.4. Approach Limitations ......................................................................................................................51 

5. Conclusions ......................................................................................................................................................52 

6. Future Research ..............................................................................................................................................53 

References ...............................................................................................................................................................53 

Appendix A: Algorithm Validation ...........................................................................................................................57 

Appendix B: Recurring Calibration ..........................................................................................................................64 

Appendix C: Non-recurring Calibration ...................................................................................................................66 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
vi 

Tables  
Table 2-1. Summary of the performance measures in HCM .................................................................................... 5 
Table 2-2. Commonly used performance measures of congestion .......................................................................... 6 
Table 2-3. Further breakdown of LOS F .................................................................................................................... 9 
Table 3-1. Definitions used ......................................................................................................................................16 
Table 3-2. Geometric properties of the Selmon Expressway..................................................................................20 
Table 3-3. Traffic statistics of the Westbound segments of the Selmon Expressway (2019) .................................20 
Table 3-4. Facility/segment matching criteria ........................................................................................................20 
Table 3-5. Geometric properties of the matched segments in Texas .....................................................................21 
Table 3-6. Traffic statistics of the matched segments in Texas ..............................................................................22 
Table 3-7. Levels of congestion ...............................................................................................................................29 
Table 4-1. Confusion matrix for the congestion detection algorithm ....................................................................32 
Table 4-2. Established manual validation error rules by case.................................................................................33 
Table 4-3. Summary of Incident validation .............................................................................................................34 
Table 4-4. Desired speed distributions for individual road classes .........................................................................39 
Table 4-5. Car-following model selection and modified parameters for recurring conditions ..............................39 
Table 4-6. Car-following model selection and modified parameters for non-recurring conditions.......................41 
Table 4-7. Location of recurring congestion estimated from average section speed on seed day ........................42 
Table 4-8. Selected speed advisories for recurring congestion ..............................................................................43 
Table 4-9. Summary of recurring TT improvements during 7 AM – 9 AM by section ............................................44 
Table 4-10. Summary of recurring TT improvements during 5 AM – 10 AM by section ........................................44 
Table 4-11. Location of incident-related congestion estimated from average section speed on seed day ...........47 
Table 4-12. Selected speed advisories for incident-related congestion .................................................................48 
Table 4-13. Summary of incident-related TT improvements during 7 AM – 9 AM by section ...............................48 
Table 4-14. Summary of incident-related TT improvements during 5 AM – 10 AM by section .............................49 
Table 4-15. Summary of TT improvements obtained from microsimulation models ............................................51 
 

 

Figures 
Figure 2-1. Greenshields speed, flow, and density relationships (Greenshields, 1935). .......................................... 4 
Figure 2-2. Influence areas of segments ................................................................................................................... 7 
Figure 2-3. Density, speed, and LOS thresholds (HCM 2010 : highway capacity manual, 2010) ............................. 8 
Figure 2-4. Fuzzy input subsets (Tseng et al., 2018) ...............................................................................................11 
Figure 3-1. Test corridor for TT comparison between BSMs and Bluetooth nodes ...............................................17 
Figure 3-2. Bluetooth-based AM TTs by day ...........................................................................................................18 
Figure 3-3. BSM-based AM TTs by day ....................................................................................................................18 
Figure 3-4. Scatter plots of TTs obtained via BSMs and Bluetooth .........................................................................19 
Figure 3-5. RSU locations closest to the Selmon Expressway in Tampa, FL............................................................19 
Figure 3-6. Snapshot of the 6-point Excel matching table for 3 lane segments .....................................................21 
Figure 3-7. Data fusion flow diagram for facilities in Texas ....................................................................................23 
Figure 3-8. Two-mile segment split of the Selmon Expressway in Tampa, FL ........................................................23 
Figure 3-9. TT generation using BSMs in Tampa, FL ...............................................................................................24 



 

 

 

 
vii 

Figure 3-10. Data fusion flow diagram for Selmon Expressway in Tampa, FL ........................................................25 
Figure 3-11. Density plots of TTI and b1 metric by segment ..................................................................................26 
Figure 3-12. Exponential moving average (EMA) applied to b1 metric ..................................................................26 
Figure 3-13. Second order Butterworth filter output .............................................................................................27 
Figure 3-14. Density plots of Butterworth filter output by segment ......................................................................27 
Figure 3-15. Cumulative density function (CDF) depicting the Butterworth filter differences in congestion types
 .................................................................................................................................................................................28 
Figure 3-16. Butterworth filter thresholds of various levels of congestion ............................................................29 
Figure 3-17. Congestion detection algorithm development and validation framework (Kummetha et al., 2021) 30 
Figure 4-1. Distributions for maximum TTI during morning congestion ................................................................32 
Figure 4-2. Location of virtual detectors used to estimate TTs ..............................................................................36 
Figure 4-3. 2D facility layout in the WB direction ...................................................................................................36 
Figure 4-4. BSMs-observed TT in minutes across the 0.5-mile sections for the recurring seed day ......................38 
Figure 4-5. NRMSE and MAPE results for calibration of recurring conditions........................................................40 
Figure 4-6. BSMs-observed TT in minutes across the 0.5-mile sections for the incident seed day .......................41 
Figure 4-7. NRMSE and MAPE results for calibration of incident-related congestion............................................41 
Figure 4-8. Single vehicle speed profiles through various recurring congestion mitigation strategies .................45 
Figure 4-9. Space-time charts showing the impact of mitigation strategies as applied to recurring congestion 
(red zones indicate congestion) ..............................................................................................................................46 
Figure 4-10. Single vehicle speed profiles through various non-recurring congestion mitigation strategies ........49 
Figure 4-11. Space-time charts showing the impact of mitigation strategies as applied to non-recurring 
congestion ...............................................................................................................................................................50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
viii 

List of Abbreviations 
AADT Annual Average Daily Traffic 

API Application Programming Interface 

ATDM Active Traffic and Demand Management 

AWAM Anonymous Wireless Address Matching 

BSM Basic Safety Message 

CAVs Connected and Autonomous Vehicles 

CCTV Closed-Circuit Television  

CDF Cumulative Distribution Function  

COVID Corona Virus Disease 

CUTR Center for Urban Transportation Research 

CV Connected Vehicle 

DDHF Directional Design Hour Flow 

DDHV Directional Design Hour Volume 

DR Dynamic Rerouting 

DSRC Dedicated Short Range Communications 

EEBL Electronic Emergency Brake Light 

EMA Exponential Moving Average 

ERDW End of Ramp Deceleration Warning 

FCW Forward Collision Warning 

FFS Free flow Speed 

FIR Finite Impulse Response 

FN  False Negative 

FP False Positive 

GPS Global Positioning System 

HCM Highway Capacity Manual 

HMI Human Machine Interface 

I2I Infrastructure to Infrastructure 

IIR Infinite Impulse Response 

LOS Level of Service 

MAPE Mean Absolute Percentage Error 

NICR National Institute for Congestion Reduction 

NRMSE Normalized Root Mean Square Error 

OBU On-board Unit 

OD Origin-Destination 

PHD Person-Hours of Delay 

PHT Person-Hours Traveled 

PMT Person-Miles Traveled 

PTI Planning Time Index 

RSU Roadside Unit 

SD Standard Deviation 



 

 

 

 
ix 

SH Speed Harmonization 

TIM Traveler Information Message 

TN True Negative 

TP True Positive 

TT Travel Time 

TTI Travel Time Index 

V2I Vehicle to Infrastructure 

V2V Vehicle to Vehicle 

V2X Vehicle to Everything 

VMS Variable Message Signs 

VRC Vehicle-to-Roadside Communication 
 

 



 

 

 

 
1 

Executive Summary 
Traffic congestion is a phenomenon that has been extensively explored by researchers. However, the negative 
safety and economic impacts resulting from traffic congestion remain at large and can occur on any roadway at 
any moment. This research utilizes data fusion between conventional sources, such as radar detectors and 
traditional probe-based data, with newer sources, such as Bluetooth and connected vehicle (CV) data, to 
identify conditions that signal impending congestion. The goal is to develop a method to proactively detect and 
mitigate congestion on freeways and arterials. 

Data-driven and signal processing techniques are explored and developed to produce an algorithm that relies 
on near-real- or real-time traffic measurements capable of generating predictions proactively, using complex 
and often subtle factors that trigger congestion. The algorithm is validated and calibrated using traffic and 
other relevant data from comparable roadway facilities located in Florida and Texas.  

The algorithm is robust enough to function on both traditional and CV-based datasets and discerns between 
four intensity levels of congestion. The algorithm is applied within a microsimulation model to test the 
effectiveness of congestion mitigation strategies ranging from speed harmonization to dynamic rerouting, 
implemented individually and simultaneously. The simulated mitigation strategies prove to be effective in 
proactively reducing recurring and non-recurring congestion while providing additional safety benefits. 

The project also demonstrates the clear advantage of using CV-based travel time estimates to calibrate 
microsimulation models over fixed point-based derivations of travel time from spot speeds. The ability to 
calibrate simulation models based on individual sections of shorter lengths (less than or equal to 0.5 miles) 
allows more detailed replications of real-world conditions.  
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1. Introduction 
Congestion management is an area of traffic research aimed towards reducing the impact of various forms of 
congestion. Typically, most congestion management solutions focus on reactive rather than proactive 
approaches. Proactive approaches to congestion management, unlike reactive, seek to apply algorithms and 
mathematical models to identify early indicators that might potentially lead to traffic congestion using available 
data sources such as radar sensors, loop detectors, probe or connected vehicles (CVs), and appropriately 
deploying mitigation strategies to optimize traffic flow and reduce delays (Abdel-Aty, Pande, & Hsia, 2010; Pan, 
Khan, Popa, Zeitouni, & Borcea, 2012).  

This project is applicable to congestion management on corridors, both with and without managed lanes. The 
project utilizes data fusion between traditional sources, such as radar and loop detector data, with newer 
sources, such as Bluetooth and CV data, to identify conditions that signal impending congestion. The main goal 
is to establish a data driven methodology to signal the likely occurrence of both recurring and non-recurring 
congestion, irrespective of the data source. Traffic and other-relevant data from two states, Texas and Florida, 
in the United States are collected and analyzed. The collected data include both traditional traffic measures and 
high frequency CV data. Big data and signal processing techniques are explored to understand and differentiate 
various levels of recurring and non-recurring congestion within the collected data.  

Congestion mitigation strategies that could be deployed within the study area (i.e., ramp metering, speed 
harmonization, and dynamic re-routing) in conjunction with the predicted type/level of congestion are 
simulated in TransModeler (Caliper-Corporation, 2020) to examine potential benefits, especially in terms of 
delaying the onset of congestion thereby reducing its duration and impact.  

Further, a parallel effort focusing on developing a confluence platform for transportation agencies to visualize 
the benefits and costs associated with proactive congestion management strategies is being undertaken by the 
Texas A&M Transportation Institute. The results and findings from this research will supplement their extensive 
literature search by using real-world data to simulate the efficacy of select congestion mitigation strategies.  

 

1.1. Objectives 

The overall aim of this project is to utilize aggregate data available from traditional traffic monitoring sources 
coupled with CV data and other geospatial information to build a more robust congestion detection algorithm 
for freeways. The robustness (compatibility of use with traditional and/or newer data sources) and proactive 
capabilities of the algorithm are prioritized to effectively test and deploy congestion mitigation strategies in the 
study area. More specific objectives of this project are to: 

• Conduct a thorough literature review on existing measures of congestion and near real-time congestion 
management/mitigation strategies. 

• Develop a congestion detection methodology applicable to both traditional (i.e., radar, loop detectors, 
Bluetooth) and CV-based data sources, originating from different geographic locations. 

• Utilize the depth of low penetration CV-data along with traditional measures of traffic congestion to 
develop and validate a congestion detection algorithm.  

• Highlight the versatility of CV-based infrastructure even at low market penetration, when compared to 
other traffic data sources.  
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• Use TransModeler to simulate recurring and non-recurring congestion on the Tampa Hillsborough 
Expressway Authority (THEA) Selmon Expressway in Tampa, FL. Further, apply and simulate congestion 
mitigation strategies based on the predictions of the congestion detection algorithm to demonstrate 
potential traffic and safety benefits. 

 

1.2. Outline 

The report starts by providing a brief introduction along with the specific project objectives. Chapter 2 presents 

a comprehensive literature review detailing similar research efforts and potential gaps that could be addressed. 

Chapter 3 focuses on the methodology and details the study locations, the data collection and data fusion 

processes, and the development of the congestion detection algorithm. Chapter 4 presents and discusses the 

results of applying the congestion detection algorithm and microsimulation. The results section also details any 

limitations to the methodological approach. Chapter 5 concludes by providing recommendations for future 

research. 

2. Literature Review 
Congestion, simply stated, is a phenomenon that occurs when demand (volume of roadway traffic) is greater 
than or equal to supply (optimum roadway capacity at a given time). The highway capacity manual (HCM) 
defines it as “the difference between the highway performance experienced by the users and how the system 
actually performs” (HCM 2010 : highway capacity manual, 2010). Traffic congestion typically entails periods of 
decreased or nonuniform travel speed, increased vehicle density, increased delays or travel times, and long 
queue lengths. Severe congestion known as “unacceptable congestion” consists of delays in excess of the 
acceptable/agreed-upon norms after accounting for the time of day, geographic location, mode of travel, and 
type of transportation facility (Lomax et al., 1997). Congestion can also be further divided into recurring and 
non-recurring. Recurring congestion takes place at a specific time period every day and is usually associated 
with peak commute hours (Lomax et al., 1997). Non-recurring congestion, on the other hand, could be a result 
of incidents, weather, lane closures, and other unforeseen capacity reductions or increase in traffic demand 
(i.e., special events).   

Factors that lead to traffic congestion have been extensively studied by researchers all over the world. This 
review of existing literature summarizes the frequently used measures to define and measure congestion. 
Several algorithms and approaches previously derived by researchers are discussed in detail. The literature 
review also discusses the various types of traffic management strategies (reactive and proactive) and their 
validity from past research.  

 

2.1. Congestion on Freeways 

One of the first studies documented to demonstrate breakdown of traffic flow resulting from oversaturated 
conditions (congestion) is conducted by Greenshields in 1935. Greenshields suggested a linear decrease in 
space mean speed with an increase in traffic density (defined as the number of vehicles per mile per lane on a 
roadway). At an optimum speed (So) resulting in the density (Do), the roadway provides the maximum flow-Vm 
(defined as the number of vehicles passing through a given point per unit time) following a parabolic curve. 
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Exceeding the Do threshold signals oversaturated conditions and the start of congestion as shown in Figure 2-1 
(Salter, 1976). Researchers have further refined this relationship through large traffic studies across various 
locations to show a discontinuous relationship when approaching Do, identifying oversaturated conditions 
(HCM 2010 : highway capacity manual, 2010).  

 

Figure 2-1. Greenshields speed, flow, and density relationships (Greenshields, 1935).  

 

These speed-flow-density relationships have been used to develop several tools and methodologies to pinpoint 
the start and progression of congestion. The Greenshields approach is known to be more accurate for 
density/speed/flow estimation at the beginning and end of the concentration curves and less accurate in the 
middle region (maxima).  A lot of the density estimation techniques used in studies provide and follow a 
reactive approach to solving congestion i.e., by relying on historical data to deliver informed mitigation 
strategies. However, in most cases the recommended control strategies apply to fixed or previously 
documented experiences of recurring congestion (Pan et al., 2012). The control strategies are usually not 
transferrable to other locations, not even to those with similar characteristics. Recent studies have considered 
this limitation of reactive approaches and are more focused on proactive approaches that could, in near-real 
time, predict congestion and trigger mitigation strategies to optimize the flow of traffic using connected vehicle 
infrastructure. 

Typical performance measures obtained from the HCM that classify the extent of congestion include: 

• Quantity of service – determined by the number of people using the system, the distance they travel i.e., 
person-miles traveled (PMT), and the time spent traveling i.e., person-hours of travel (PHT). The mean trip 
speed for the roadway/segment is obtained by dividing the PMT by the PHT.  

• Intensity of congestion – number of hours of congestion (person-hours of delay); mean delay per person-
trip; volume/demand-to-capacity ratio. 
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• Duration of congestion – Total time that the demand exceeds the discharge capacity of the freeway 
segment.  

• Extent of congestion – directional miles of congested facility (or queue lengths). 

• Variability – probability of occurrence (recurring or nonrecurring).  

• Accessibility – system effectiveness in terms of persons able to accomplish their travel goal within the 
anticipated timeframe (HCM 2010 : highway capacity manual, 2010; Lomax et al., 1997).  

• Other frequently used variables – travel time index (ratio of actual travel time to ideal travel time at free-
flow speed) where a travel time index of 1.5 usually indicates congestion (HCM 2010 : highway capacity 
manual, 2010); planning time index (ratio of the 95th percentile travel time index to free-flow travel 
time(Transportation Research Board & NASEM, 2014a)); level of service (LOS) of the segment. 
 

Table 2-1. Summary of the performance measures in HCM 

Category Performance Measure 

Quantity of service 
Person-miles traveled (PMT) 
Person-hours of travel (PHT) 
Mean trip speed 

Intensity of congestion 

Person-hours of delay (PHD) 
Mean delay per person-trip 
Volume-to-capacity ratio 
Demand-to-capacity ratio 

Duration of congestion Total time  

Extent of congestion Directional miles of congested facility (queue lengths) 

Variability Probability of occurrence  

Accessibility 
Persons able to accomplish their travel goal within the 
anticipated timeframe 

Other variables 
Travel time index (TTI) 
Planning time index (PTI) 
Level of service (LOS): A to F 

 

Other performance measures typically used when identifying congestion mitigation strategies are detailed by 
Lomax et al. (1997) and they include: travel rate (ratio of travel time to segment length), delay rate (difference 
between actual and acceptable travel rate), delay ratio (ratio of delay rate to actual travel rate), congested 
roadway (total sum of congested segment lengths), speed reduction index (percentage reduction in average 
speed from free-flow speed divided by 10 and ranges between 0 to 10, with values exceeding 5 indicating 
congestion) and congested travel (sum of the product of all individual congested segment length and traffic 
volume) (Lomax et al., 1997). These performance measures have been typically used as aggregate reactive 
measures for congestion studies. Estimating more predictive measures such as probability of occurrence has 
not been explicitly defined as other measures in the HCM. This could be due to several constraints but mostly 
because of lacking infrastructure to routinely collect and analyze high resolution traffic data. A more detailed 
overview of commonly used congestion measures is presented in Table 2-1. 
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(a) Weaving 

500 ft 500 ft 

Blue line indicates one-sided ramp weave 

 

Table 2-2. Commonly used performance measures of congestion 

Variable Performance Measure Facts 

Travel time TTI 
Travel time reliability 
Travel rate 
Delay rate 
Mean delay per person trip 
Delay ratio 
Planning time index (PTI) 

Frequently used 
Check-in/out approach 
Both space and speed are considered 
Accuracy depends on equipment 
Easy to compare to ideal conditions 
Roadway characteristics not required 
Continuous in most cases 

Speed Mean trip speed 
Speed reduction index 
Spot speed 

Relatively easy to obtain 
Free-flow speed acts as a good baseline 
Usually based on space-mean-speed 
Easy to compare to ideal conditions 
Continuous measure 

LOS (A-F) 
 

Density 
 

6 levels based on ranges of traffic density at 
corresponding free-flow speeds 
Complex to obtain  
Segment characteristics required 
Discontinuous in nature  
Does not provide any information on oversaturated 
traffic flow  

Other Total congestion time 
Queue length 
Volume/capacity ratio 
Demand/capacity ratio 
Congested travel 

Continuous 
Difficult to estimate accurate queue lengths 
Queue length is an easy measure to understand 
Traffic demand is difficult to estimate 
 

 

The HCM methodology provides guidelines for determining levels of congestion within a freeway facility 
(defined as a portion of the freeway with multiple segments selected for analysis) by splitting it into three types 
of segments i.e., weaving, merge and diverge, and basic, as these segment types have shown to vary in traffic 
behavior and characteristics. Each of these segments have influence areas as shown in Figure 2-2, derived from 
the HCM 2010. Impact of interacting traffic varies substantially between these types of segments and so do the 
applicable methodologies for traffic density estimation.  

 



 

 

       

 

(b) Merge (c) Diverge 

1500 ft 1500 ft 
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Figure 2-2. Influence areas of segments 

The HCM methodology is heavily reliant on establishing the demand (defined as the number of vehicles 
desiring to use a given facility within a time period) and capacity (defined as the maximum sustainable hourly 
flow rate at which vehicles pass through a section of the roadway under the existing traffic conditions) of a 
facility (HCM 2010 : highway capacity manual, 2010). To establish current conditions, free flow speed (FFS) 
must first be established either by carrying out a spot speed study or using Equation 2.1. The HCM recommends 
measuring a sample of at least 100 passenger cars (pc) during flow rates of less than 1000 pc/h/ln by isolating 
speeds of every tenth car in a particular lane. Establishing FFS also helps determining ideal and true travel times 
and their reliability.  

 

𝐹𝐹𝑆 = 75.4 −  𝑓𝐿𝑊 − 𝑓𝐿𝐶 − 3.22𝑇𝑅𝐷0.84                                                                                                                       (2.1) 

 

Where, 

FFS = free flow speed (mph) 

fLW = lane width adjustment (Exhibit 11-8 HCM) 

fLC = right-side lateral clearance adjustment (Exhibit 11-9 HCM) 

TRD = total ramp density (ramps/mile): 3 miles up and downstream of the facility.  

 

The HCM methodology then requires a demand adjustment based on the peak hour factor (defined as the 
hourly flow during the maximum-volume hour during the 24-hour period divided by the maximum 15-minute 
flow rate within the peak hour). This aspect restricts the methodology to be applied to proactive congestion 
detection as knowing traffic volume for the entire peak period is a prerequisite. Other adjustment factors (i.e., 
heavy vehicles, unfamiliar drivers, etc.) demand to further calibrate to existing conditions might pose more 
challenges. Additionally, establishing true demand of a facility is complex and usually adjusted during 
calibration but cannot be accurately measured as it is affected by upstream conditions (HCM 2010 : highway 
capacity manual, 2010). Figure 2-3 shows the corresponding density thresholds for a particular level of service 
(LOS), given the FFS. The HCM also does not provide any further analysis of the intensity or progression of 
congestion once LOS F has been exceeded. An increase in the deployment of connected and autonomous 
vehicles (CAVs) technology might provide more insights into the initial identifiers of congestion and how to 
predict their occurrence by providing access to high frequency continuous datasets that can be used in 
precision mapping of changing traffic conditions such as travel times, queues, expected delays, and potential 
incidents.  
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Figure 2-3. Density, speed, and LOS thresholds (HCM 2010 : highway capacity manual, 2010) 

Researchers using probe-vehicle, simulated CV, and real-world CV data have utilized alternative but 
comparable approaches to the HCM for estimating traffic density more readily with less complexity (Anand, 
Ramadurai, & Vanajakshi, 2014; Anand, Vanajakshi, & Subramanian, 2011; Grumert & Tapani, 2018; Khan, Dey, 
& Chowdhury, 2017; Qiu, Lu, Chow, & Shladover, 2010; Rahman, Chowdhury, & McClendon, 2018). A 
frequently used alternative to the HCM is proposed by May in 1990. This approach estimates density using the 
percentage occupancy (% OCC: defined as the percent of time a section of the roadway is occupied) per lane as 
shown in Equation 2.2 (May, 1990).   

 

𝑘 =  
52.8

𝐿𝑉  ̅̅ ̅̅ +  𝐿𝐷
× % 𝑂𝐶𝐶                                                                                                                                                      (2.2) 

 

Where, 

k = density (vehicles/lane/mile) 

𝐿𝑉  ̅̅ ̅̅ = average vehicle length (feet) 

LD = detection zone length (feet) 

% OCC = percent occupancy 

Although this methodology used thresholds from the 1985 HCM for density to determine LOS, newer 
thresholds can be substituted from the HCM 2010. Percent occupancy can be established using Equations 2.3 
and 2.4. Density can then be obtained using Equation 2.2.  
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% 𝑂𝐶𝐶 =  
𝑁

𝑇
(

100

µ̅𝑆𝑀𝑆
)

𝐿𝑉  ̅̅ ̅̅ +  𝐿𝐷

5280
                                                                                                                                           (2.3) 

µ̅𝑆𝑀𝑆 =  
3600

5280
(

𝐿𝑉  ̅̅ ̅̅ +  𝐿𝐷

𝑡0̅
)                                                                                                                                                  (2.4) 

Where, 

N = number of vehicles passing over a point in time period T 

T = time period of observations (hours) 

t0 = individual vehicle occupancy time (seconds) 

µ̅𝑆𝑀𝑆 = space mean speed at time period T 

These methodologies for establishing density are heavily reliant on historical trends and numerous variables 
that increase the complexity when applied to a predictive model. The type of segment also introduces more 
checks and adjustment factors within the methodology. Further, the HCM or May (1990) do not categorize 
what happens within each LOS band. This is especially useful when establishing the level of congestion due to 
oversaturated flow. A more precise breakdown of LOS F is detailed by a traffic quality study of the metropolitan 
Washington area (Bauza & Gozalvez, 2013; Skycomp, 2009). The breakdown is summarized in Table 2-3. Table 
2-3 also provides an insight into speed ranges for various levels of congestion. This provides a good baseline for 
distinguishing between recurring and non-recurring congestion.   

 
Table 2-3. Further breakdown of LOS F 

LOS F 

Severity Description 
Observed 
Speed, mph 

Density, 
pc/mi/ln 

1 Minor slowing 30 – 50 46 – 59 

2 Further slowing 15 – 40 60 – 79 

3 Congested flow with some stopping 10 – 25 80 – 99 

4 Severe congestion with stop-and-go flow < 10 100 – 119 

5 Possible incident, crash, lane closure, etc. < 10 > 119 

* With a spacing of 20 feet between vehicles, a theoretical value of 260 pc/mi/ln can be estimated for jam 
density. However, in practical conditions, jam density is usually around 180 to 190 pc/mi/ln. 

 
Apart from computing existing traffic conditions, the HCM methodology has been adopted into software tools 
such as FREEVAL and highway capacity software capable of computing travel time reliability and impacts of 
incidents such as work zones to freeway capacity (Jolovic, Stevanovic, Sajjadi, & Martin, 2016). FREEVAL is also 
capable of utilizing inbuilt historical weather data to determine adjustment factors but at a very aggregate 
level. However, these tools are not optimized for real-time prediction, require heavy calibration, and lack the 
ability to utilize dynamic information such as incidents or even changing weather conditions.    

From the above information, a few limitations of traditional measures of congestion to near real-time 
applicability are summarized below: 

• Many variables are required to be collected for estimating existing conditions and bottlenecks.  
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• Based on a seed day and process must be repeated/altered for any slight change in traffic, geometric, or 
climatic conditions to achieve higher accuracy. Complicated and labor intensive to repeat the process for a 
large period.  

• Computing densities is usually an approximation and true conditions over a small-time frame might have 
high variability (Anand et al., 2014; Hall, 1996).  

• Oversaturated flow conditions are not sufficiently captured.  

• Using space mean speed (defined as the harmonic average speed in the HCM) has limitations when applied 
to congested conditions as speeds at segment vertices might not capture conditions within the segment. A 
possible solution would be to use average travel speed (determined by dividing the segment length by 
average travel time) (Hall, 1996).  

• Extensive calibration efforts are required to bridge HCM estimates to real-world observations via several 
capacity and speed adjustment factors. 

• Weather and incident information is usually applied as an aggregate value (per day) and not within a 
period.  

• Great for estimating existing conditions but lacks the ability to dynamically predict any future conditions 
(HCM 2010 : highway capacity manual, 2010). 

Apart from traditional data sources such as traffic volume counts and spot speeds, emerging technologies add 
more depth by estimating travel times and in some cases high frequency vehicle trajectories. The next section 
provides an overview of some commonly used technologies. 

 

2.2. Real-time Congestion Prediction  

Real-time congestion prediction strategies using CV-data have been previously explored (Grumert & Tapani, 
2018; Rahman et al., 2018). However, most of the studies use simulations and lack real-world data. In the past 
five years, USDOT has tried to make more CV datasets publicly available to researchers through the USDOT 
Intelligent Transportation Systems (ITS) Joint Program Office (JPO) Data Hub. CV pilot deployment sites 
providing valuable data include Tampa, Wyoming, and New York City.  Before the availability of such detailed 
datasets, a common source of publicly available vehicle trajectory data used by researchers to model CV 
behavior is the Next Generation SIMulation (NGSIM). NGSIM data are captured using a series of synchronized 
video cameras on freeways and processing algorithms without relying on CAV infrastructure (Punzo, 
Borzacchiello, & Ciuffo, 2011; Rahman et al., 2018). However, these datasets require heavy filtering and 
consistency checks to isolate trajectories especially in oversaturated conditions with stop-and-go traffic (Punzo 
et al., 2011). Utilizing these datasets alone would not result in efficient models, so researchers employ data 
fusion to combine information (Anand et al., 2014; Anand et al., 2011; Grumert & Tapani, 2018; Khan et al., 
2017; Papacharalampous, Cats, Lankhaar, Daamen, & Lint, 2016; Qiu et al., 2010; Rahman et al., 2018). Data 
fusion in transportation involves utilizing multiple sources (i.e., cell phones, Bluetooth, loop detectors, video, 
radar detectors, RFID readers, toll tags, CV, GPS, probe vehicles, social media reports, DOTs, weather APIs) 
measurement techniques, and analytics to generate more complete datasets.  

Rahman et al. (2018) utilize NGSIM datasets to predict traffic flow at low CV penetration. However, the authors 
assume each NGSIM data timestep (10HZ) to approximate/represent a Basic Safety Message (BSM) sent by a 
CV. The authors examine several recurring neural network models to capture temporal variations in time-series 
datasets (vehicle trajectories). The Long Short-Term Memory (LSTM) neural network is coupled with either the 
moving average model, standard Kalman filter model, or Rauch-Tung-Striebel (RTS) model  at various 
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penetration rates given that the NGSIM data are assumed to provide 100% penetration over the several 500 m 
collection zones (Rahman et al., 2018). The results suggest an accurate prediction of speed and space headways 
when the LSTM is coupled with the RTS model even at low penetration rates of 5% (Rahman et al., 2018). The 
computational time for future predictions is estimated at 80 milliseconds. It should be noted that these 
predictions are solely based on past trajectories and no other external factors such as geometry, weather, 
incidents, and closures are evaluated. Also, the individual highway sections considered are relatively small and 
the performance of the prediction algorithm might vary significantly if a longer facility is considered. Although 
the model does not predict congestion status, estimating future speeds and space headway can provide insight 
into roadway capacity and flow.   

Tseng et al. (2018) utilize data from select Taiwan regions to develop a real-time congestion prediction model 
using the Apache Storm open-source computing system. To develop the Support Vector Machine (SVM) model, 
they use several open data sources such as traffic, weather, and social media traffic status updates. The traffic 
data consist of volume counts, observed densities, and lane speeds. Fuzzy thresholds are developed for the 
various parameters to easily classify existing conditions as shown in Figure 2-4. The defuzzification is based on 
the center of area method to estimate levels of congestion shown in Figure 2-4(e). The levels of congestion are 
then used by the SVM model to effectively predict speeds for the immediate future time period (Tseng et al., 
2018).  

 

 

Figure 2-4. Fuzzy input subsets (Tseng et al., 2018) 

Another widely used metric for congestion classification is travel time. Several technologies that collect such 
information already exist and they include: automatic vehicle identification (electronic tolls, RFID tags, license 
place recognition), radar, Bluetooth, and probe vehicles (Hargrove, Lim, Han, & Freeze, 2016; Puckett & Vickich, 
2010). Although most of these technologies are interchangeably used by DOTs, they are being overshadowed 
by Bluetooth detectors that are cost effective, maintain anonymity, and provide reliable data (Friesen & 
McLeod, 2015; Karatsoli, Margreiter, & Spangler, 2017; Margreiter, Spangler, Zeh, & Carstensen, 2015; Puckett 
& Vickich, 2010). Margreiter et al. (2015) showed that travel time from Bluetooth detectors could be used as a 
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substitute for traditional tolling or loop detectors estimates. Incidents and changes in average speed are 
captured with relatively good precision and small sample size. Hargrove et al. (2016) compare several of these 
technologies using the license plate recognition as ground truth and found similar travel time results, though 
Bluetooth is not very efficient in estimating traffic volumes. The study also shows that travel time estimates 
match ground truth when the time intervals used are not widely spaced i.e., 1 min or 5 min intervals. Using 
larger time intervals results in a larger variance and over smoothing (Hargrove et al., 2016). It should also be 
noted that Bluetooth data have several limitations such as establishing true location of congestion, sample loss 
due to designated check-in/check-out zones, wide detection zones sometimes introducing false data, 
dependency introduced due to TT estimates arising from multiple devices within a single vehicle, and poor 
traffic volume correlation.   

As previously mentioned, another emerging source of detailed traffic-related data is CV infrastructure. CV 
technologies utilize one or more of the following communications, such as vehicle to vehicle (V2V), vehicle to 
infrastructure (V2I), infrastructure to vehicle (I2V), infrastructure to infrastructure (I2I), and vehicle to 
everything (V2X), to facilitate information transmission between roadway users and surrounding systems 
("J2735_201603: Dedicated Short Range Communications (DSRC) Message Set Dictionary," 2016; Kishimoto, 
Yamada, & Jinno, 2014; LeBlanc, 2006). Communication across these systems can be achieved via land mobile 
radios, commercial mobile radio services, radio frequency identifiers, infrared tags and beacons, WiFi, 
dedicated short range communications (DSRC), cellular vehicle-to everything (C-V2X), and Bluetooth (LeBlanc, 
2006). The three CV pilots in Tampa, Wyoming, and New York City rely on DSRC (802.11 p-based wireless 
communication that operates in the 5.9 GHz band whilst enabling high-speed, low-latency, and secure 
communication between vehicles and infrastructure, without cellular support). BSMs are the primary source of 
CV data shared across these communication protocols and consist of information pertaining to the type, 
location, longitudinal/lateral control, and state of the CV equipped with an on-board unit (OBU). Individual 
OBUs broadcast BSMs continually to the roadside units (RSUs) along the roadway, which in turn facilitate V2X 
communications.  

Bauza and Gozalvez (2013) present a novel approach to cooperative traffic congestion detection (CoTEC) based 
on V2V communications in the iTETRIS simulation platform. CoTEC utilizes a fuzzy-based congestion detection 
mechanism based on more aggregate thresholds of speed and density developed by Skycomp (2009) as shown 
in Table 3. However, density estimation is based on an assumption of 100% penetration with vehicles being 
able to estimate distance between themselves thus approximating the number of neighboring vehicles (Bauza 
& Gozalvez, 2013). Although this approach works in theory, the applicability to real-world situations with 
penetration rates far from 100% is very limited. When the penetration rates are further modified to 75% and 
50% in the simulations, the models ability to predict diminishes substantially by up to 50% and 80%, 
respectively (Bauza & Gozalvez, 2013). Grumert and Tapani (2018) propose estimating traffic state with respect 
to density using a similar approach within SUMO microsimulation. Traffic state estimates vary significantly if 
short time periods are used together with low penetration rates. It is also noted that inhomogeneous traffic 
conditions further compromise the density predictions (Grumert & Tapani, 2018).  

Overall, literature indicates that congestion prediction models/algorithms are substantially more efficient with 
high CV penetration rates. CV-data based algorithms are highly complex and not easily transferrable. And as 
evident from the literature, they are largely modeled under simulation platforms and make several 
assumptions towards real-world conditions. Also, existing models almost always use multiple sources such as 
volume counts, speeds, and densities, requiring more infrastructure than relying on any one indivudal 
technique.  
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In summary, the review finds that: 

• Using data fusion of traditional TT measures to enrich BSM-based TT especially in terms of incident and 
weather information has not been extensively explored. 

• The models do not adequately distinguish between recurring and non-recurring congestion. 

• The models also tend to calculate traffic densities using the Greenshields method, which is known for 
being easy to apply but not very accurate when compared to the HCM. Applying other parameters that 
can be more readily obtained, unlike density, could be benefitial.   

• A universally applicapable approach that could work on both traditional and BSM-based datasets with 
low penetration rates has not been extensively researched. Also, most models/algorithms use a 
cospicuous number of variables (live data feed) and validate using simulation platforms thus affecting 
their real-world vaidity.  
 

2.3. Active Traffic and Demand Management (ATDM) Strategies 

The usefulness of individual ATDM strategies is being extensively researched. However, their effectiveness on 
demand, speed, capacity, and travel time is highly variable and in most cases condition-specific. This section 
discusses some strategies that can be coupled with CV infrastructure for real-time traffic management.   

2.3.1. Driver Alerts 

These comprise of non-conventional short messages or warnings, displayed via HMIs, set to alert the driver of 
impeding congestion with the overall goal of improving safety and easing the progression of congestion by 
reducing start-stop traffic (Concas, Kourtellis, Reich, & Authority, 2019). A few examples of driver alerts that 
have been previously applied with CV infrastructure, as detailed below.  

2.3.1.1. Emergency Electronic Brake Light (EEBL) 

EEBL is a V2V application that alerts drivers to hard braking events occurring in downstream traffic. This alert is 
transmitted by a CV currently engaged in an emergency braking event (remote vehicle) to other nearby CVs not 
immediately behind or out of line of sight (Concas et al., 2019). The application acts as a signal of impeding 
congestion and could be coupled with speed advisories.  

2.3.1.2. Queue Warning/End of Ramp Deceleration Warning (ERDW) 

The ERDW is a V2I application typically used to detect queue lengths in a specific zone and transmit information 
back to the RSU. The RSU then issues a traveler information message (TIM) that suggests traveling speeds when 
the driver is approaching the end of the queue by estimating a safe stopping distance. The application serves 
the dual purpose of improving safety and mobility to users.  

2.3.1.3. Forward Collision Warning (FCW) 

Forward Collision Warning (FCW) is a V2V application that alerts the host vehicle driver of an impending threat 
ahead and in line of sight. The overall goal of the alert is to reduce the severity of crashes typically rear end by 
taking into account the time to collision (Concas et al., 2019). These alerts could train drivers to maintain a safe 
following distance while decreasing the effect of stop-and-go traffic.  
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2.3.2. Speed Harmonization 

Speed harmonization entails implementing variable speed limits in relation to the traffic conditions 
downstream of a roadway, to reduce speed differentials (Hale et al., 2016; Malikopoulos, Hong, Park, Lee, & 
Ryu, 2019). There are several benefits of speed harmonization, particularly in terms of improved safety (less 
stop-go traffic) and mitigating loss of highway performance (travel times, and speeds). Speed harmonization 
algorithms have been extensively researched, however, practical implementation varies based on several 
geometric and traffic factors (Hale et al., 2016).  The application of speed harmonization can be done using 
speed- or density-based algorithms. Equation 2.5 shows an example of a simple speed-based harmonization 
algorithm used to output a speed advisory. 

𝑢𝑚(𝑘) = 𝑎𝑚  ×  �̅�𝑚 (𝑘)                                                                                                                                                        (2.5)
  

Where, 

𝑢𝑚(𝑘) = Suggested speed advisory at time interval k in bottleneck 

𝑎𝑚 = proportional control in bottleneck (adjust factor, default = 1.3) 

�̅�𝑚 (𝑘) = measured speed in the bottleneck 

 

The established speed advisories can be communicated using variable/dynamic message signs. Emerging 
research has also shown possibilities of communicating speed advisories in near-real time using CV-
infrastructure coupled with driver alerts (Hale et al., 2016). An example is the use of the ERDW and EEBL 
applications in the THEA CV Pilot (Concas, Kourtellis, Kamrani, & Dokur, 2021).  

2.3.3. Variable Message Signs (VMS) 

This strategy uses dynamic reprogrammable signs to display messages to roadway users. Messages involving 
road closures, incidents, optimized speed limits, bad weather, travel time delays, and possible work zones can 
be displayed (Mahmassani et al., 2014). The idea is to prepare drivers and possibly modify driving behavior by 
providing an insight on what to expect.  

These signs have been used widely in many states in the United States and United Kingdom. However, there is 
no accurate data on their effectiveness as an ATDM strategy. Effectiveness of such strategies depends on 
several factors such as location, purpose, sign size, and other factors (Gopalakrishna, Cluett, Kitchener, & Balke, 
2011). However, these signs can be used in tandem with CV infrastructure to not only display what to expect 
but also to state recommendations such as speed advisories to minimize travel times by decreasing delays 
incurred due to stop-and-go conditions. 

2.3.4. Ramp Metering 

Ramp meters have been in use since late 1950’s in several cities across the United States. Ramp metering 
involves controlling traffic merging onto the freeway by using a traffic signal situated near merge points. It 
restricts vehicles entering the freeway to optimize freeway capacity and free flow speeds. Ramp metering can 
be devised based on upstream and downstream traffic conditions or at pretimed intervals. Ramp meters can be 
programmed to release vehicles as a platoon or on a one-at-a-time basis (Jacobson, Stribiak, Nelson, & Sallman, 
2006). Installing ramp meters depends on several factors other than freeway traffic conditions, such as the 
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availability of queue storage on ramps, queue detectors on the ramp to facilitate timing adjustment, 
geographical extent, and impact on surrounding arterials (Jacobson et al., 2006).  

In multiple traffic studies carried out by State DOTs and research centers, ramp metering has shown to increase 
vehicle speeds, increase vehicle flow, and improve roadway capacity. Safety improvements such as reduced 
crashes have also been observed by up to 50% in some cases (Jacobson et al., 2006). However, negative 
impacts such as potential traffic diversion to other arterials without ramp meters and possible shift of 
congestion zones are theorized.  

 

2.3.5. Incident Detection 

Incidents are a major cause of travel delays and other crashes on freeways. A commonly used incident 
detection strategy by most DOTs in the United States is a network of closed-circuit television cameras (CCTVs). 
These cameras are monitored by operators in real-time to determine location of incidents and assist 
dispatchers in responding promptly. However, manual or semi-automated processes are not as prompt in 
mitigating crashes as automated real-time strategies. Automated incident detection algorithms have been 
developed for decades using loop detector data to predict unexpected travel time delays (Houbraken et al., 
2017; Wang, Xie, Liu, Fang, & Ragland, 2016; Weil, Wootton, & Garcia-Ortiz, 1998). However, they are prone to 
limitations such poor spatial coverage, data blind spots between the detectors, missed check-in points, and 
mechanical failures. Houbraken et al. (2017) propose utilizing floating car data coupled with loop detector 
estimates of average speeds for validation. The study considers two travel routes, one consisting of a more 
access-controlled location (route A58: 19 km long from Tilburg to Eindhoven in Netherlands) and one consisting 
of several at-grade intersections (route A27: 37 km long from Utrecht to Gorinchem in Netherlands). The 
methodology divides congestion into two states (ON/OFF) based on a speed (< 40 mph) and acceleration 
threshold. The results show that floating car estimates of possible incidents (indicated by lower average 
speeds) are more accurate under the access-controlled setting. Overall, floating car data only produce 4-5% of 
false negatives when compared to the loop detectors (Houbraken et al., 2017).  

Another common hazard experienced by roadway users is debris. Debris on freeways is a major concern as it 
results in crashes or damage to vehicles. Between 2011 and 2014 there are an estimated 243,413 crashes 
attributed to debris in the United States (Tefft, 2016). Further, in 2018 over 2,900 crashes are attributed to 
debris in the State of Florida alone (Concas & Kamrani, 2019). Typically, these obstructions are usually reported 
by roadway users (toll-free numbers), maintenance vehicles, and CCTV operators. However, similar to incident 
detection, immediate traffic cannot be alerted swiftly. Concas and Kamrani (2019) established an algorithm 
capable of identifying potential locations with debris by modeling individual lane changes from BSMs. The 
algorithm had a high accuracy of 96% in estimating the true location of the debris (Kamrani, Concas, & 
Kourtellis, 2021). Similar techniques could also be applied towards traffic incidents and even non-recurring 
congestion. 

2.3.6. Dynamic Re-routing and Pre-travel Information 

Dynamic rerouting is a traffic management strategy that provides road users alternative routes when their 
preferred route is congested due to recurring or non-recurring traffic conditions (Mirshahi et al., 2007). This 
strategy can be applied during or before trip-making. The former requires the presence of roadway 
infrastructure such as VMS, V2X capabilities, radio broadcasts, to relay prevailing conditions detected by the 
traffic management center to the driver. Dynamic rerouting could also be combined with pre-traveler 
information to better inform users about prevailing traffic-related conditions before choosing their route and 
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mode of travel, thus allowing for a less stressful trip (Mirshahi et al., 2007). It includes information such as 
congestion zones, bad weather, work zones, incident delays, and several other trip-specific information.  

2.3.7. Speed Feedback Signs 

This strategy involves a speed camera and a monitor. The speed camera tracks the speed of the oncoming 
vehicle and displays it on the monitor. The idea of this strategy is to inform drivers of their current speed to 
make them comply with the roadway speed limit. CV infrastructure can also be used to communicate speed 
warnings over the air via on-board human-machine interfaces to ensure driver compliance.  

  

3. Methodology 
This section describes the preliminary assessment of data compatibility between Bluetooth and CV-based 
datasets, properties of selected roadway facilities, data fusion protocols for the two geographic locations, and 
the development of the congestion detection algorithm. Table 3-1 outlines a few commonly used definitions 
when describing the study areas.  

Table 3-1. Definitions used  

Term Definition 

Facility The mainline roadway spanning the study area 

Segment A portion of the facility comprising consistent geometric/traffic properties 
(i.e., number of lanes, AADTs, speed limits) 

Section Smaller portions than segments, established to determine TTs between two 
points or virtual sensors.  

Travel time (TT) Time taken to traverse a section of roadway 

Travel Time Index (TTI) Ratio of actual TT to ideal TT at free-flow speed (FFS) 

 

3.1. Data Compatibility and Preprocessing 

Preliminary testing is first carried out to compare TT estimates generated from BSMs and Bluetooth to ensure 
data compatibility for development of the congestion detection algorithm. A small study location in Tampa, FL, 
comprising of RSUs and Bluetooth detectors is used to test compatibility of TT measurements across the 
equipment. TTs are compared across these devices during the morning peak period (6 AM to 10 AM) for an 
entire year (1st January 2019 to 31st December 2019). Figure 3-1 shows the 0.27-mile test corridor (AB) along 
with the location of Bluetooth nodes and RSUs.  

 



 

 

 

A 

B 

REL 
A: REL North of Twiggs St.  

B: Twiggs St @ Nebraska Ave 
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Figure 3-1. Test corridor for TT comparison between BSMs and Bluetooth nodes 

Using BSMs generated multiples times per second (up to 10 Hertz) by up to 964 active participant (closely split 
between males and females) vehicles equipped with after-market OBUs, geo-spatial information is processed 
via virtual sensors (indicated in yellow) to flag check-in and check-out times of individual vehicles using a 
unique static identifier assigned during participant recruitment. Using Equation 3.1, average penetration rates 
are computed over a one-month period (July) across the two data generation sources (Friesen & McLeod, 
2015). Average CV penetration rates during the morning peak period are computed to average 0.44% (with 
hourly highs of up to 1.2%) while Bluetooth penetration is computed to average 4% (with hourly highs of up to 
7%). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =   
100%

𝑛
𝑋 ∑

𝑋𝑖  

𝐶𝑖
                                                                                                          (3.1)

𝑛

𝑖=1

 

Where, 

n = Number of days in July (31 days) 

𝑋𝑖 = Daily count of observations used for TT match during morning peak period 

𝐶𝑖 = Daily vehicle count estimate during the morning peak period, extracted from the electronic toll counts 

 
Figure 3-2 and Figure 3-3 show a comparison of TTs and daily AM averages established from Bluetooth and 
BSMs. The observed daily AM TT average pattern across the two estimates is similar but the TTs obtained from 
BSMs are consistently higher. The scatter plot shown in Figure 3-4 indicates a high correlation (Pearson’s 
coefficient = 0.811) between the TTs obtained from BSMs and Bluetooth nodes. The difference in actual TTs for 
a specific 5-minute period could be attributed to the relatively large detection zones (200 ft-400 ft) of the 
Bluetooth nodes that further vary by type/connectivity range of Bluetooth device detected. The high 
correlation suggests that the two estimates of TT are compatible for use in TT-based congestion algorithm 
development and validation.   
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Figure 3-2. Bluetooth-based AM TTs by day 

 

  

Figure 3-3. BSM-based AM TTs by day 
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Figure 3-4. Scatter plots of TTs obtained via BSMs and Bluetooth 

 

3.2. Facility Description  

The first step is to select freeway facilities from the pooled databases of the project research teams, with 
similar traffic and geometric properties across the two states, Florida and Texas, in Unites States.  

3.2.1. Florida 

The primary facility consists of a seven mile stretch of the Selmon Expressway in Tampa equipped with multiple 
RSUs generating data from 834 unique connected vehicles. This facility is further divided into two three-lane 
and one two-lane segments in the westbound direction, as shown in Figure 3-5. The study focuses on the 
westbound direction due to the higher penetration of CV-equipped commuters traveling towards downtown, 
Tampa.  A unique feature of the Selmon Expressway is the ability to access the reversible express lanes (REL) 
system located on the upper deck of the freeway. The REL changes operation by day of week and time of day 
(AM, mid-day, PM) to efficiently move traffic in/out of Tampa.   

 

Seg A, Length: 2 Miles 

Seg B, Length: 4 Miles 

Speed limit: 55 mph 

Speed limit: 65 mph 

Figure 3-5. RSU locations closest to the Selmon Expressway in Tampa, FL 
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Table 3-2 and Table 3-3 provide geometric and traffic statistics for the Selmon Expressway. The facility has two 
speed limit zones of 55 mph and 65 mph. However, both zones exhibit similar free flow speeds (FFS) of 73 mph 
and 75 mph, respectively.  

 
Table 3-2. Geometric properties of the Selmon Expressway 

Seg 
ID 

Location Zip Lanes 
Length/ 

miles 
Speed Limit/ 

mph 
AADT 

(vehicles) 
% Heavy 
vehicles 

A N 26th St to S Morgan St 33605 3 2.0 55 80,000 5% 

B S 78th St to N 26th St 33619 2 4.0 65 80,000 5% 

 

Table 3-3. Traffic statistics of the Westbound segments of the Selmon Expressway (2019) 

Seg 
ID 

Direction 
HCM FFS/ 

mph 
*85th 

Percentile FFS/ mph 
50th 

Percentile TTI 
85th 

Percentile TTI 
95th 

Percentile TTI 

A WB 69.6 73 1.09 1.21 1.34 

B WB 69.6 75 1.08 1.18 1.57 

*85th percentile FFS is derived by computing TTs under known normal traffic conditions (i.e., 10 PM to 5 AM) 

 
Data from different geographic locations are used to develop and validate a robust congestion detection 
algorithm. A 6-point checklist based on the principles of the HCM is developed in Microsoft Excel to identify 
facilities/segments in Texas that are comparable to the Selmon Expressway as shown in Table 3-4. The six 
variables used include: Number of lanes, Median type, HCM free flow speed (FFS), Annual Average Daily Traffic 
(AADT), directional design hour volume (DDHV) in vehicles per hour, and directional design hour flow (DDHF) in 
passenger car equivalent per hour per lane. Matches are performed with respect to the two distinct segments 
A and B. An ideal match would comprise an entire 6-point match. However, due to the limited availability of 
travel time and vehicle volume collection equipment at short segment intervals (i.e., 2 miles or less) in Texas, 
three levels of matching are ultimately established to ease selection criteria. A “Good Match” requires 4 or 
more variable matches (shown in Figure 3-6) while a “Poor Match” requires at least 3 variable matches. A 
“Failed Match” is recorded when less than 3 variables are adequately matched. The matching process 
significantly improves the identification and selection of facilities while accounting for traffic and geometric 
properties.     

 
Table 3-4. Facility/segment matching criteria  

Variable Criteria for Match 

Number of lanes 2 or 3 lane segments 

Median type Concrete barrier 
HCM FFS +/- 5 mph 

AADT +/- 10,000 vehicles 

DDHV +/- 300 veh/h 
DDHF +/- 150 passenger cars/h/ln 
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Figure 3-6. Snapshot of the 6-point Excel matching table for 3 lane segments 

 

3.2.2. Texas 

The matching process identified 5 facilities, with four located in Houston and one in Prairie Dell on Interstate-
35. Table 3-5 and 

Table 3-6 provide the geometric and traffic properties of the matched segments with respect to the direction of 
travel. Each segment comprises two Bluetooth sensors for travel time estimation and at least one radar 
detector for volumes and spot speeds, located within the segment. Segments 1 and 2 match segment A in 
Tampa while segments 3, 4, and 5, match segment B. 

Table 3-5. Geometric properties of the matched segments in Texas  

Seg 
ID 

Location Zip Lanes 
Length/ 

miles 
Speed Limit/ 

mph 
AADT 

(vehicles) 
% Heavy 
vehicles 

1 
North Sam Houston 
Tollway – Wilson Rd to W 
Lake Houston Parkway 

77049 3 2.0 65 80,000 10% 

2 
I-35 – Prairie Dell to FM-
2115 

76571 3 1.4 75 80,000 25% 

3 
SH-99 – Cinco Ranch Blvd 
to Kingsland 

77494 2 2.0 70 95,000 5% 

4 
SH-288 County Rd 58 to 
County Rd 101 

77578 2 1.4 65 70,000 20% 

5 
SH-288 County Rd 101 to 
County Rd 518 

77578 2 1.9 65 70,000 20% 
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Table 3-6. Traffic statistics of the matched segments in Texas 

Seg ID Direction 
HCM 

FFS/ mph 
*85th  

Percentile FFS/ mph 
50th 

Percentile TTI 
85th  

Percentile TTI 
95th  

Percentile TTI 

1 
EB 

69.6 
64 1.08 1.27 1.53 

WB 71 1.05 1.13 1.31 

2 
NB 

67.7 
70 1.01 1.07 1.11 

SB 69 1.01 1.07 1.12 

3 
NB 

67.3 
68 1.12 2.17 2.56 

SB 76 1.16 1.64 3.22 

4 
NB 

69.6 
67 0.94 1.10 1.17 

SB 72 0.98 1.17 1.22 

5 
NB 

69.6 
72 1.09 1.17 1.24 

SB 71 1.07 1.14 1.20 

*85th percentile FFS is derived by computing travel times under known normal traffic conditions (i.e., 10 PM to 
5 AM) 

 

3.3. Data Fusion 

Data fusion methods are employed to establish a complete dataset consisting of various segment-specific 
traffic-related variables. This step is carried out independently for the roadway segments in Florida and Texas. 
The complete process of data fusion is shown in Figure 3-7. 

Data fusion is first applied to the Texas segments to facilitate the development of the congestion detection 
algorithm. Texas raw data consist of five main sources i.e., Bluetooth (Anonymous wireless address matching-
AWAM), radar (at least one radar location), planned road closure records, incident records, and historical 
weather collected from January 2018 to March 2020 (790 days). Although more recent traffic data are 
available, the project team selected this timeframe to control for impact of the Corona Virus Disease 2019 
(COVID-19) on travel behavior.  

The AWAM and radar data are available in 5-minute increments. Planned road closures are extracted based on 
the start/end datetime and flagged every 5-minutes until elapsed. Similarly, incidents are flagged based on 
confirmed/cleared datetimes. To further investigate traffic progression during incident-related congestion, 
time buffers are placed one-hour prior the confirmed incident times and two hours post cleared times. Only 
incidents within one mile upstream/downstream of the segment are included. Historical weather data are 
available in one-hour increments from an application programming interface (API) using the closest zip code of 
the segment. Following data merging across these sources, FFS (85th percentile speed computed using average 
speeds from 10 PM and 5 AM), travel rate, and TTI, are computed. In time-period with no TT estimates, TT from 
the last known period is applied.  
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Figure 3-7. Data fusion flow diagram for facilities in Texas 

 
A similar data fusion process is used to create the Florida dataset. Segment lengths across the two geographic 
locations is set to a maximum of two miles to identify and potentially mitigate sources of congestion. Segment 
B from the Selmon Expressway is divided into two 2-mile segments shown in Figure 3-8. 

 

Selmon Expressway 

Figure 3-8. Two-mile segment split of the Selmon Expressway in Tampa, FL 
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There are several advantages of using CV infrastructure to determine TTs. This research capitalizes on the 
spatial-temporal precision of BSMs and limited TT estimate loss due to incomplete check in/out vehicle 
identifiers especially when involving segments with multiple access points. To continually estimate TTs at low 
CV penetration rates, multiple intermediate virtual sensors are positioned half-mile apart in ArcGIS as polygon 
shape files, 100 ft in length, and later referenced in R scripts (Pebesma, 2018) to determine intersecting BSM 
trajectories.  

TTs are then extracted for sections between two consecutive virtual sensors in 5-minute aggregates. Figure 3-9 
shows the trajectory of a single vehicle. In the event two BSMs are present within the virtual sensor as shown 
by 1 & 2 or 3 & 4, deduplication is applied to only select the earliest BSM. TT for this section would then be 
estimated between the two BSMs, 1 and 3. If multiple vehicles are present within a 5-minute interval, average 
TT would be computed for the section. This process is applied to periodically estimate TTs of the three 
segments by summing TTs between consecutive 0.5-mile virtual sensors within the bounds of the selected 
segment. TT data cover one year starting on 21st February 2019 and ending on 21st February 2020. 

 

  

1 

2 

3 

4 

Figure 3-9. TT generation using BSMs in Tampa, FL 

The Incident records are from the Florida Department of Transportation (FDOT) open data hub (FDOT-Safety-
Office, 2020). However, incident cleared times are not available in the database, so the Florida 2019-2020 
reported average incident clearance time (one hour) is added as a congestion buffer. Only incidents within one-
mile upstream/downstream of the segment are included. Historical weather data are collected in 10-minute 
intervals from an API starting on 21st February 2019. Unfortunately, road closure information is not readily 
available to the project team for validation. Figure 3-10 shows the data fusion steps. 
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Figure 3-10. Data fusion flow diagram for Selmon Expressway in Tampa, FL 

3.4. Developing the Congestion Detection Algorithm 

Based on the objective of this research project on being able to apply the developed congestion detection 
algorithm to any data source with TT estimates, the algorithm is first applied to the Texas dataset (due to more 
segment diversity and completeness in terms of logging non-recurring events) and is later tested on the CV-
based Florida dataset (Kummetha, Kamrani, & Concas, 2021).  

After performing data fusion, a universal parameter is required to ensure the robustness of the congestion 
detection algorithm. The b1 metric is established to simply compute change in TTI intensity between two 
successive time-steps, as shown in Equation 3.2. This metric makes direct comparisons between distinct 
segments to establish static zones of various types of congestion.  

𝑏1 =  
𝑇𝑇𝐼𝑡 − 𝑇𝑇𝐼𝑡−1

𝑇𝑇𝐼𝑡−1
                                                                                                                                                            (3.2) 

Where, 

𝑇𝑇𝐼𝑡 = TTI at time step t 

𝑇𝑇𝐼𝑡−1 = TTI at the immediate previous time step (5 minutes prior) 

 
Figure 3-11 shows the result of using the b1 metric instead of directly applying TTI across the various segments. 
Figure 3-11(a) clearly depicts the failure of TTI as a universal threshold due to the wide variety of traffic 
conditions across segments within similar geographic locations. Figure 3-11(b) shows the applicability of the b1 
metric as a universal approach to setting static thresholds, as the density plots are more normally distributed 
around a common mean.   



 

 

   

(a) (b) 
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Figure 3-11. Density plots of TTI and b1 metric by segment1 

 
Although using the b1 metric proves to unify the distributions, high variability between time points is observed, 
as shown in Figure 3-12. The high variability would result in discontinuous and frequent prediction fluctuations 
without any clear insights into the type or intensity of congestion. The research team applied several 
smoothing functions to reduce the variability of the b1 metric, including simple moving average and 
exponential moving average (EMA) with varying window sizes. While the functions can reduce the high 
variability, they do not sufficiently smooth the b1 metric and are still susceptible to averaging the highs and 
lows. As a result, they are not able to highlight key congestion peaks/points.   

 

 

b1 metric 
9-point EMA 
26-point EMA 

Figure 3-12. Exponential moving average (EMA) applied to b1 metric 

 
The next approach is to apply signal processing algorithms and assess the outcomes. Finite Impulse Response 
(FIR) and Infinite Impulse Response (IIR) filters are examined. The proposed congestion detection algorithm 
would benefit from faster processing power due to near real-time processing of data and more consistent 

 

1 Where, EB = Eastbound, WB = Westbound, NB = Northbound, and SB = Southbound, directions of travel 
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outputs resulting from feedback circuitry. A commonly used filter in signal processing known for efficiently 
rejecting unwanted signal frequencies (low ripples in the processed signal) while maintaining uniform 
sensitivity towards the key frequencies is the Butterworth filter (Roberts & Roberts, 1978). The Butterworth IIR 
filter is selected with a bandpass ranging from 0 to 0.1 (0% to 10% change in b1)(Developers, 2014; Jagtap & 
Uplane, 2012). This is done to ensure that large highs followed by steep lows in the b1 metric (signaling volatile 
recovery) would be minimized without affecting the overall observed trend. Also, as the goal is congestion 
prediction, negative b1 values are treated as noise and filtered accordingly. Several orders of the Butterworth 
filter are examined, but the second order achieved sufficient smoothing without excessive signal lag. Figure 
3-13 shows the results of the application of the second order Butterworth filter.  

   

             b1 metric 
             Butterworth filter 

Figure 3-13. Second order Butterworth filter output 

Density plots are re-examined to ensure that the application of the signal processing algorithm does not 
significantly shift the distribution of the segments. Figure 3-14 shows the distributions is still centered around 
the origin.  

 

Figure 3-14. Density plots of Butterworth filter output by segment 
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After establishing the merit of using Butterworth filter, data from the five segments are combined and 
processed to establish thresholds for various types of congestion. The types of congestion are determined by 
tracking some of the more common causes of congestion within the pooled dataset i.e., recurring, weather, 
road closures, and incidents. 

To begin, normal conditions must be established for the Butterworth filter output. This is done by filtering out 
time periods showing the presence of adverse conditions such as incidents, road closures, and weather. Public 
holidays are also excluded from the normal conditions as research has shown non-recurring congestion 
patterns during these periods (Transportation Research Board & NASEM, 2014a, 2014b). Also, normal 
conditions are assumed to occur after 10 PM and before 5 AM of any given day. However, constant time 
thresholds over this time period are established across all five segments to generalize hours of daily recurring 
congestion without individual inference to account for high variability of recurring periods within/between 
segments and day of week. Due to not being able to fully isolate recurring congestion, this category is classified 
as “Normal + Recurring.” 

Weather-related congestion is assessed in detail by identifying congestion peaks in the pooled dataset. The two 
main weather-related variables contributing to congestion are identified to be precipitation and visibility. 
Further data processing signal higher congestion if precipitation is present or visibility is less than 4 miles. As 
adverse weather during late night/early hours would not significantly affect the traffic flow due to inherently 
low volumes, data from 5 AM to 10 PM are used to determine the Butterworth filter thresholds. Incident and 
road closure-related congestion thresholds are established within the same time period.  

The quantiles for all five cases are computed and are shown in Figure 3-15. Based on these quantiles, the 95 
percentiles are used to classify congestion as depicted in Figure 3-16. Figure 3-15 and Figure 3-16 show that the 
quantiles for recurring and weather-related congestion are similar and cannot be fully distinguished from each 
other.  

 

 

Figure 3-15. Cumulative density function (CDF) depicting the Butterworth filter differences in congestion types   
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Figure 3-16. Butterworth filter thresholds of various levels of congestion 

As the thresholds for “Normal” condition are established, the clear difference in 95th percentile Butterworth 
thresholds when compared to “Normal + Recurring” imply that this could be directly attributed to recurring 
congestion. Although five types of congestion are analyzed, the similarities between the intensities of recurring 
and weather-related congestion warrant the congestion detection algorithm to combine them. The output of 
the algorithm provides four levels of congestion and follows the conditions shown in Table 3-7 (as evident from 
Figure 3-16).  

 
Table 3-7. Levels of congestion  

Congestion Type Condition Predicted Congestion Level 

Normal y ≤ 0.030 1 

Recurring OR Weather 0.030 < y ≤ 0.048 2 

Other Non-Recurring (including 
planned road closures) 

0.048 < y ≤ 0.170 3 

Incident Y > 0.170 4 

*y = Butterworth filter value at time, t 

 
Figure 3-17 shows the steps followed during algorithm development and validation. 

  

 

 



 

 

 

 
30 

 

Figure 3-17. Congestion detection algorithm development and validation framework (Kummetha et al., 2021) 
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4. Results and Discussion 

4.1. Congestion Detection Algorithm 

The development of a robust congestion detection algorithm capable of functioning without extensive 
evaluation of geographic/segment-specific traffic thresholds is the primary objective of this project. The next 
few sections discuss the validation of the congestion detection algorithm, along with the encountered 
limitations to the approach.  

 

4.1.1. Algorithm Validation 

The validation dataset is inspected and imported as a daily live feed in 5-minute intervals. The second order 
Butterworth filter requires at least two hours (24 5-minute time steps) of data prior to the beginning of 
prediction. During the validation, daily data from 12 AM to 2 AM are used as prediction warm-up time. The 
Butterworth filter is applied after every 5-minute TT import. Due to the use of a TT dataset generated from low 
CV penetration, jumps in TT intervals are observed. To correct for this, the 95th percentile within a one-hour 
moving window of the Butterworth filter is used. The prediction time and level of congestion are noted 
accordingly.  

Establishing ground truth for the validation dataset is based on a few assumptions as accurately classifying 
historical data is not possible. All time periods are initially assumed to exhibit normal congestion (level 1) unless 
an incident (level 4) or weather (level 2) event is reported. Any time periods with average travel speeds less 
than the posted speed limit of the segment and not satisfying incident or weather conditions are treated as 
possible cases of non-recurring congestion (level 3). 

Recurring congestion (level 2) is established based on a series of normal distributions established from the 
pattern of morning peak traffic for each of the three segments (A, B-1, and B-2). Figure 4-1 shows the density 
plots of TTI for weekday morning peak time period. During the evaluation timeframe, the facility did not exhibit 
afternoon peak hour traffic in the Westbound direction. To establish morning recurring congestion start/end 
times on a particular day of a segment, a random value is drawn from the normal distribution of that particular 
segment and offset by an hour to set the start of recurring congestion for that particular day. Since the 
standard deviation of the plots is approximately 1 hour, a fixed value of 2 hours is used as the duration of 
recurring congestion.  

 



 

 

 

 

(a) (b) 

(c) 
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Figure 4-1. Distributions for maximum TTI during morning congestion 

 

4.1.1.1. Confusion Matrix 

Prediction error computation is first established by creating a confusion matrix, as shown in Table 4-1. 
However, due to the presence of time lags (proactive or delayed) and varying levels of congestion prediction, a 
one-on-one match might only be appropriate for the normal condition (level 1). The confusion matrix is further 
aggregated for level 1, to establish the precision, recall, and error in the prediction.  

Table 4-1. Confusion matrix for the congestion detection algorithm 

 Predicted 

G
ro

u
n

d
 T

ru
th

 

 

Levels 1 2 3 4 Total 

1 209295 2907 2973 1825 217000 

2 31594 3892 6356 941 42783 

3 19699 2174 2592 1568 26033 

4 55 11 18 12 96 

Total 260643 8984 11939 4346 285912 
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 Level 1 Positive Negative  Precision = 0.803 

Positive  TP = 209295 FN = 7705  Recall = 0.964 

Negative FP = 51348 TN = 17564  Error = 20.7% 

  

The results indicate a relatively good precision, recall, and low error (20.7%) in establishing normal conditions. 
However, to evaluate other levels, manual validation is warranted.  

4.1.1.2. Manual Validation 

Manual validation is performed by considering the congestion prediction time and level. Prediction errors are 
equally allocated between the proactive nature of the algorithm (0.5) and the accuracy of the level of 
congestion being predicted (0.5). The sum of the prediction errors attributed to the proactive and predicted 
levels are then computed, to establish total prediction error (shown in Table 4-2). The congestion detection 
algorithm is only penalized for a predicted level lower than the intensity of the ground truth (i.e., a case with 
ground truth of level 3 congestion would only be penalized if the predicted congestion level is level 2 or 1, level 
3 or 4 would not be penalized). A failed prediction would result in an error of 1.  

Table 4-2. Established manual validation error rules by case 

Case Description 
Applied Error Rules 

Proactive component 
(max = 0.5) 

Congestion level component 
(max = 0.5) 

1 
Full proactive – with sufficient congestion 
prediction before ground truth.  

0 0 

2 

Partially proactive – prediction starts 
before ground truth, but sufficient 
prediction is only reached after ground 
truth.  

0 
|LP-LG| X 0.5/3 
[3 indicates the maximum possible 
difference in congestion levels] 

3 
Delayed – prediction starts after ground 
truth, but sufficient prediction is achieved 
within 30 minutes (six 5 -minute periods). 

(TP-TG) X 0.1 
[0.1 accounts for the 30- 
minute allowable delay] 

|LP-LG| X 0.5/3 

4 
Failed – prediction starts after 30 minutes 
of ground truth. 

0.5 0.5 

*LP = Accepted level of predicted congestion, LG = Level established from ground truth, TP = Time of 
prediction, TG =Time of congestion as established form the ground truth 

 

𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 =  100% 𝑋 
∑ 𝜀𝑖

𝑁
𝑖

𝑁
                                                                                                                                         (4.1) 

Where, 

N = Total number of cases examined 

𝜀𝑖 = Established error for a single case, i 
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The validation summaries by congestion types are discussed below. 

Recurring Congestion Validation 

A total of 100 cases of recurring congestion are randomly selected and examined across the three segments. 
The mean error is computed to be 29.7% using Equation 4.1. All examined cases are presented in Appendix A.  

 
Other Non-recurring Congestion Validation 

A total of 75 cases of non-recurring congestion are examined across the three segments. The mean error is 
computed to be 32.2%. Summarized metrics are presented in Appendix A. 

 
Weather-related congestion Validation 

A total of 45 cases are examined for weather-related congestion. Changes to traffic state arising from weather 
cannot be detected by the congestion detection algorithm due to overlapping thresholds with recurring 
congestion (level 2), hence the need for an external weather data source providing the ground truth for 
validation. The selected cases comprise of speed changes coupled with flags of adverse weather conditions 
(i.e., onset of precipitation or drop in visibility) to establish the algorithm’s accuracy in capturing weather 
influenced changes to traffic conditions. The mean error for the 45 cases is computed to be 33.3% (shown in 
Appendix A).  

 
Incident Validation 

The number of incidents validated are relatively low over the selected validation time frame. Overall, seven 
incidents are validated as shown in Table 4-3. The mean error is found to be 43.2%. However, excluding 
incidents that occur on weekends as changes to traffic state (average speed/TT) are not readily detected 
resulted in a mean error of 35.1%.   

 
Table 4-3. Summary of Incident validation 

Date 
Confirm 

Time 
Seg 
ID 

Location 
Day of 
Week 

Prediction 
Start Time 

Level 
Match Time 

Prediction 
Error 

3/22/2019 4:25 A Downstream Fri *NA NA 1.00 

10/30/2019 10:35 A Upstream Wed 7:25 7:25 0.00 

11/13/2019 7:00 A Within Wed 6:50 NA 0.13 

10/30/2019 10:35 B-1 Within Wed 7:15 8:05 0.00 

11/13/2019 7:00 B-1 Upstream Wed 6:50 NA 0.25 

11/23/2019 8:50 B-1 Within Sat NA NA 1.00 

7/16/2019 18:45 B-2 Upstream Tue 19:15 19:20 1.00 

11/13/2019 7:00 B-2 Within Wed 6:40 7:25 0.08 

 
Mean Error 0.432 

Mean Error without Weekends 0.351 

*NA indicates prediction did not start or intensity level is not matched within 30 minutes of ground truth 
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In general, the developed congestion detection algorithm is moderately effective in predicting the onset of 
congestion and its intensity level. The overall prediction error across all congestion types is averaged to 30.2%. 
However, the process followed to compute the prediction error heavily penalizes the algorithm especially in 
instances where the ground truth cannot be fully verified to the nearest 5-minute time period, i.e., time logs 
from incident reports could be filed as a derivation of officer arrival time and not actual crash time. This also 
applies to the estimation of recurring congestion which is based on historical distribution plots and not 
observed ground truth. Also, since the number of incident-related congestion events were small (seven), 
evaluation of the algorithm with future crash logs could provide better validation.  

 

4.1.2. Approach Limitations 

A few limitations of the developed congestion detection algorithm are discussed below: 

• One of the main limitations of using BSM-based TT estimates are the high rate of discontinuous data within 
successive 5-minute intervals, resulting from low CV penetration rates. However, this is expected to 
significantly improve in the near future due to ongoing commuter recruitment and original equipment 
manufacturer (OEM) partnerships in Tampa, FL (Concas, Kourtellis, & Kamrani, 2021).    

• The congestion detection algorithm is developed and validated using data from only two geographic 
locations. Adding more geographic variability could further improve the overall robustness.  

• Computing free flow speeds using 85th percentile estimates from 10 PM to 5 AM results in some errors 
especially in facilities with high night-time truck traffic.   

• The methodology does not distinguish between more than one type of congestion occurring 
simultaneously. However, the suggested mitigation strategy will still be valid based on the predicted 
congestion level. 

• The validation metrics of the algorithm are not universally applicable and there are cases where the 
implemented error rules aggressively penalized the algorithm due to approximation of the ground truth.  
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4.2. Microsimulation  

A key goal of this research is to proactively detect congestion and its intensity level. This section discusses the 
process followed to establish representative microsimulation models of recurring and non-recurring congestion 
in the lower decks of the Selmon Expressway in Tampa, FL. The purpose of this exercise is to simulate the types 
of congestion (recurring and non-recurring) and potential strategies that could be applied based on the four 
predicted congestion levels from the algorithm. The goal is to identify and evaluate mitigation strategies that 
could be applied in real-world conditions to alleviate the intensity of congestion based on the congestion 
detection algorithm’s output. 

4.2.1. Baseline Geometry 

Figure 4-2 and Figure 4-3 show the geometry and location of virtual sensors used to compute section-wise TTs 
along the westbound Selmon Expressway. During the AM hours, the Selmon Expressway provides an on-ramp 
access to the REL in the direction towards downtown Tampa (shown in Figure 4-3). The virtual sensors are 
strategically positioned in ArcGIS as polygon shape files, 100 ft in length, and later referenced in R scripts to 
determine intersecting BSM trajectories.  

 

 

Figure 4-2. Location of virtual detectors used to estimate TTs 

 
 

 

0.5 miles 

Figure 4-3. 2D facility layout in the WB direction 
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The simulation model, run using TransModeler, utilizes the GIS-based coordinates of virtual sensors to assign 
the positions of vehicle-to-roadside communication (VRC) sensors. The VRC sensors track unique vehicle IDs, 
sensor IDs, detection time, speed, origin point, and destination point, as they traverse through the simulation 
network. This simulation calibration approach takes full advantage of CV trajectory data while minimizing 
missing data points due to low penetration rates and multiple access points.  

4.2.2. Simulation Calibration 

Systematic simulation calibrations of real-world conditions involving recurring and non-recurring congestion 
are performed. This section describes all the steps followed and the establishes goodness of fit metrics.  

4.2.2.1. Recurring Conditions 

Recurring traffic conditions depict the existing conditions experienced by commuters using this facility. Traffic 
volumes are obtained from the Iteris dashboard for the mainline and surrounding on/off ramps in the 
westbound direction of the Selmon Expressway (Iteris, 2021). This is because the Selmon Expressway does not 
have sensor-based volume counts. Iteris generates hourly volume estimates using a combination of Texas 
Transportation Institute AADT to volume profile methodology and available probe/traffic sensor data. Origin-
destination (OD) matrices for traffic volumes are developed in hourly increments as that is the highest level of 
granularity available.   

A weekday (April 8, 2019) is selected as seed day after confirming the absence of non-recurring sources of 
congestion such as public holiday, incidents, precipitation, and poor visibility. TTs for the seed day during 
morning peak hours are obtained by geo-spatially extracting time stamps and vehicle IDs in BSMs detected 
within the virtual sensors shown in Figure 4-2. The virtual sensors are placed half-a-mile apart along the 
westbound 7-mile section of the Selmon Expressway. TTs are extracted for sections between two consecutive 
virtual sensors at 5-minute intervals, starting from 5 AM to 10 AM. The following steps are taken to generate 
more complete data: 

• Missing data due to lack of BSMs generated within the 5-minute interval are populated with the last known 
travel time for that section.  

• BSMs that miss checking in/out of one or more consecutive virtual sensors due to GPS signal loss are 
identified and also used to generate TTs by extrapolating individual 0.5-mile section TTs from average speeds. 

• Where multiple vehicles IDs are detected within a single 5-minute interval and section, average TTs are 
computed respectively.    

The project team acknowledges these assumptions/short-comings and attributes them to the current low CV 
penetration rates. However, current plans to increase enrolling vehicles would improve penetration rates and 
significantly reduce the need for extrapolation. Figure 4-4 shows the real-world (BSMs) travel times observed 
for the recurring conditions seed day. For reference, typical free-flow TTs across individual 0.5-mile sections are 
recorded to be between 0.40 and 0.42 minutes. 
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Figure 4-4. BSMs-observed TT in minutes across the 0.5-mile sections for the recurring seed day 

After computing the observed TTs, the simulation is setup to match facility specific conditions by setting the 
vehicle class distribution to include 5% heavy vehicles and applying the appropriate speed limits to the 
respective road classes. Prior to making any calibration changes, all network links are set to follow the default 
Wiedemann 74 parameters for car-following and Neighboring lane model for lane changing. A 20-minute 
simulation warm-up period, prior to the start of data collection (4:40 AM to 5:00 AM) is set by accounting for 
the TTs to traverse the facility at the speed-limits. Traffic volumes are input in hourly intervals using OD 
matrices and a standard deviation of 5% is used to introduce some variability within the volumes.  

The baseline simulation is then batch-processed 10 times to obtain the standard deviation from the results. 
Equation 4.2 shows the number of simulation runs required to achieve 95% confidence with an allowable error 
(ε) of 10-percent. The mean (µ) of the 0.5-mile section with the largest standard deviation (SD) in TTs is used for 
the calculation. A total of 25 runs are chosen as the optimum required number (Kamrani, Abadi, & 
Golroudbary, 2014).  

 

𝑡𝛼/2 = 2.262 (𝑑𝑓 = 9, 𝑎𝑙𝑝ℎ𝑎 = 0.05) 

𝑁 ≥  [
𝑆𝐷 × 𝑡𝛼

2

µ × 𝜀
]

2

                                                                                                                                                                   (4.2) 

[
6.3 × 2.262

29.4 × 10%
]

2

= 𝟐𝟒 𝒓𝒖𝒏𝒔 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 ~ 𝟐𝟓 𝒓𝒖𝒏𝒔 

 

Two measures, the normalized root mean square error (NRMSE) and mean absolute percentage error (MAPE) 
shown in Equations 4.3 and 4.4, are used to compute the goodness of fit between the observed and simulated 
travel times for the entire facility. A pre-liminary target of achieving both NRMSE and MAPE scores of less than 
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25% for the entire facility (from virtual sensor 101 to 115) is set. Further, individual 0.5-mile section targets of 
less than 30% for either NRMSE or MAPE are also set to ensure sufficient localized calibration. 

% 𝑁𝑅𝑀𝑆𝐸 =  
√∑ (�̂�𝑡 − 𝑦𝑡)2/𝑛𝑛

𝑡=1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
  × 100 %                                                                                                                (4.3) 

 

𝑀𝐴𝑃𝐸 =  
100 %

𝑛
∑ |

𝑦𝑡 − �̂�𝑡

𝑦𝑡
|

𝑛

𝑡=1
                                                                                                                                     (4.4) 

 

Where,  

�̂�𝑡 represents the estimated TT values output from TransModeler at time t 

𝑦𝑡 represents the actual value of the TT (from BSMs) at time t 

n represents the number of individual time points (5-second time steps) 

𝑦𝑚𝑎𝑥 is the maximum value of 𝑦𝑡 from t = 1 to t = n 

𝑦𝑚𝑖𝑛 is the minimum value of 𝑦𝑡 from t = 1 to t = n 

 
The simulation model for recurring conditions is calibrated over several iterations. The initial iterations 
observed that the free-flow TTs did not match real-world conditions. To fix this, desired speed distributions are 
modified for both the sections of the facility with existing speed limits of 55 mph and 65 mph. It is noted that 
average and free-flow speeds within the two distinct speed-limit segments are identical and much higher than 
the posted speed limits. Free-flow TTs are closely matched by adjusting the speed distributions shown in Table 
4-4. 

 
Table 4-4. Desired speed distributions for individual road classes  

Speed Deviation (mph) -10 -5 0 5 10 15 20 25 

Driver % for 55 mph segment 0 1 5 5 10 43 35 1 
Driver % for 65 mph segment 1 2 15 25 50 5 2 0 

 

Following the calibration of free-flow TTs, further iterations are performed to replicate the onset of recurring 
congestion, as shown in Figure 4-4. Driver behavioral parameters, shown in Table 4-5, with respect to car-
following are then adjusted until the desired calibration thresholds of NRMSE or MAPE are reached (Kondyli, 
Chrysikou, & Kummetha, 2020). Batch simulations of 25 runs are then completed to generate the outputs.   

 

Table 4-5. Car-following model selection and modified parameters for recurring conditions 

 Wiedemann-74 Wiedemann-99 

From virtual 
sensor 

To virtual 
sensor 

AXadd (ft) AXmult (ft) BXadd (ft) BXmult (ft) CC0 (ft) CC1 (s) CC2 (ft) 

101 109 8.00 0.98 8.00 9.84 - 
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109 110 - 4.92 0.90 13.12 

110 115 8.00 0.98 8.00 9.84 - 

The output from TransModeler’s VRC vehicle/sensor reports are then post-processed in R to compute TTs in 5-
minute intervals for individual sections. The comparison charts showing seed day versus calibrated TTs are 
reported in Appendix B. Figure 4-5 shows a breakdown of the goodness-of-fit scores by section. Facility-wide 
NRMSE and MAPE averages are 22.7% and 16.8%, respectively.  

 

Figure 4-5. NRMSE and MAPE results for calibration of recurring conditions 

4.2.2.2. Non-recurring Conditions 

Like modeling recurring conditions, a seed day for incident-related congestion is identified along the facility. 
The chosen seed day, 13th November 2019, involved a two-vehicle crash heading westbound, close to the 78th 
street interchange on the Selmon Expressway. The crash is reported to have occurred at 7:02 AM and resulted 
in severe congestion as shown by the increase in TTs in Figure 4-6.  
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Figure 4-6. BSMs-observed TT in minutes across the 0.5-mile sections for the incident seed day 

Calibration is performed by first trying to identify congestion patterns in the TTs obtained from the BSMs. 
Several iterations of calibration are attempted using speed and driver behavior adjustments. However, due to 
the impact of the incident, sufficient calibration is only achieved by applying a controlled lane closure between 
section 105 and 107 for a duration of 50 minutes. Table 4-6 shows the fine-tuned parameters of the car-
following models used to achieve sufficient calibration.  

Table 4-6. Car-following model selection and modified parameters for non-recurring conditions 

 Wiedemann-74 Wiedemann-99 

From virtual 
sensor 

To virtual 
sensor 

AXadd (ft) AXmult (ft) BXadd (ft) BXmult (ft) CC0 (ft) CC1 (s) CC2 (ft) 

101 102 6.00 1.00 6.00 3.00 - 

102 103 - 12.00 1.00 30.00 

103 113 6.00 1.00 6.00 3.00  

113 114 - 12.00 1.00 30.00 

114 115 6.00 1.00 6.00 3.00 - 

              
The comparison charts showing seed day versus calibrated TTs by section are reported in Appendix C. Figure 
4-7 shows a breakdown of the goodness-of-fit scores by section after 25 batch runs. Facility-wide NRMSE and 
MAPE averages are 20.6% and 26.9%, respectively. Individual section goodness-of-fit scores are greater in 
MAPE than NRMSE. However, NRMSE satisfies the initial calibration threshold of less than 30% error per 
section.  

 

Figure 4-7. NRMSE and MAPE results for calibration of incident-related congestion 
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4.2.3. Congestion Mitigation 

After performing sufficient calibration, both recurring and non-recurring simulation models are subjected to 
congestion mitigation strategies relevant to the study area: speed harmonization, dynamic rerouting, and 
combination of both. The next subsections present the findings in comparison to the calibrated seed-day 
conditions.  

4.2.3.1. Recurring Congestion 

No Strategy 

The no strategy reflects the output of the calibrated recurring conditions on the seed day.  

Speed Harmonization 

A combination of iterative speed advisories and a speed-based algorithm (Hale et al., 2016) are used to select 
the most efficient speed advisories within an upstream of the identified bottleneck sections. The developed 
congestion detection algorithm can predict congestion with a level match (level 2-recurring) by 6:50 AM. The 
calibrated seed day simulation model indicates a similar starting point for congestion, shown by the yellow 
border in  

Table 4-7. The bottleneck location is determined by identifying consecutive average section speeds lower than 
the posted speed limits. 

Table 4-7. Location of recurring congestion estimated from average section speed on seed day 

 

 
 

Speed advisories are first computed for the bottleneck and upstream sections based on the speed-based 
algorithm in Equation 4.5 and are activated in TransModeler assuming a 10-minute implementation/user 
acceptance delay.  

𝑢𝑚(𝑘) = 𝑎𝑚  ×  �̅�𝑚 (𝑘)                                                                                                                                                     (4.5) 
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Where, 

𝑎𝑚 = established by computing ratio of the posted speed limit to minimum observed speed = 65/53.4 = 1.22 

�̅�𝑚 (𝑘) = (55.7 + 53.4 + 55.9)/3= 55 mph 

𝑢𝑚(𝑘) = speed advisory in bottleneck = 55 x 1.22 = 67 mph ~ 65 mph 

𝑢𝑚−1(𝑘) = speed advisory upstream of bottleneck = 55 /1.22 = 45 mph  

After implementing these advisories, minor TT and average speed improvements are observed from the 
simulation models. Since developing optimized speed advisory algorithms is out of this study, an iterative 
approach is used to optimize the best combination of upstream, within, and downstream speed advisories. A 
total of 87 iterations of varying speed and advisory durations are performed. The best improvements to TT 
resulted from the combination of the speed advisories shown in  

Table 4-8, applied for a duration of one hour.  

Table 4-8. Selected speed advisories for recurring congestion 

Seg ID 102_103 103_104 104_105 105_106 106_107 107_111 

Speed advisory (mph) 55 55 50 45 45 65 

% TT improvement for 5-10 AM traffic 0.99 1.78 0.42 1.54 2.20 1.75 

 

The overall facility wide improvements to TT resulting from speed harmonization are grouped by the peak 
congestion period (7 AM to 9 AM) and extended morning period (5 AM to 10 AM). Speed harmonization 
resulted in TT improvements of 0.51% and 1.09% for the peak congestion and extended morning periods, 
respectively. Although, these improvements are minimal, the safety benefits of applying speed harmonization 
with respect to reduction of stop-and-go traffic conditions are discussed in the following sections.  

Dynamic Rerouting  

As mentioned earlier, a unique feature of the Selmon Expressway is the ability to access the REL located on the 
upper deck of the freeway. Access ramps to the REL are available in select locations and change travel direction 
depending on the time of day. For this study, in instances where congestion is detected on the lower decks of 
the westbound Selmon expressway, simulated traffic is selectively re-routed onto the REL (in the same travel 
direction) to alleviate congestion. When implementing the dynamic rerouting in a real-world setting, 
commuters will be informed of the traffic conditions and rerouting choice via HMIs or dynamic message signs.  

Dynamic rerouting is applied for a one-hour period from the first detection of congestion. Traffic volume is 
strategically reassigned to the REL in 5%, 10%, and 15% increments. Peak congestion period traffic for the 
facility improved by 3.84%, 6.15%, and 7.82%, respectively. Extended morning period traffic also improved by 
1.62%, 2.53%, and 3.24%, respectively. A section wise breakdown of the improvements resulting from dynamic 
rerouting are shown in Table 4-9 and Table 4-10. 

Dual Strategies 

Finally, a combination of two mitigation strategies is tested by simultaneously implementing speed 
harmonization with three varying increments of traffic rerouting. Traffic is rerouted onto the REL in three 
volume increments i.e., 5%, 10%, and 15%. Peak congestion period traffic for the facility (sensor 101 to 115) 
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improved by 3.82%, 5.55%, and 7.00%, respectively. Extended morning period traffic improved by 2.49%, 
3.19%, and 3.80%, respectively.  

A summary of the applied strategies, their intensities, and percentage improvements to traffic conditions are 
shown in Table 4-9 and Table 4-10. 

 

 

 

Table 4-9. Summary of recurring TT improvements during 7 AM – 9 AM by section 

 

 

Table 4-10. Summary of recurring TT improvements during 5 AM – 10 AM by section 

 

 

Further, Figure 4-8 shows the speed profiles of a single vehicle traversing through recurring congestion under 
previously outlined mitigation strategies. Speed harmonization strategy using speed advisories can be clearly 
associated with reduction of stop-and-go traffic flow, thus reducing possibilities of rear-ending. However, TTs 
are not significantly improved. Dynamic rerouting resulted in the greatest improvement to TTs, but little to no 
improvement is observed in terms of stop-and-go flow. Combining both speed harmonization and dynamic 
rerouting (10% traffic rerouting onto the REL) proved to be very effective in achieving both TT and safety 
improvements.  

101_102 102_103 103_104 104_105 105_106 106_107 107_108 108_109 109_110 110_111 111_112 112_113 113_114 114_115

Speed 

Harmonization (SH) -0.12% 0.33% 1.46% -1.39% 0.36% 1.54% 0.52% 0.99% 0.44% 1.94% 0.75% 0.22% 0.15% -0.01%

Dynamic re-routing 

(DR) 5% -0.22% 7.82% 10.97% 8.59% 7.29% 6.36% 6.11% 1.70% 1.62% 0.96% 1.26% 0.75% 0.35% 0.21%

DR 10% -0.46% 11.53% 15.29% 12.94% 12.54% 11.47% 10.25% 3.25% 3.19% 1.79% 2.04% 1.00% 0.89% 0.31%

DR 15% -0.82% 13.24% 18.46% 17.23% 16.10% 15.04% 13.25% 4.39% 4.29% 2.39% 3.12% 1.38% 1.10% 0.37%

SH + DR 5% -0.42% 7.11% 11.71% 5.97% 5.57% 5.74% 6.57% 2.97% 2.10% 3.21% 1.83% 0.71% 0.37% 0.10%

SH + DR 10% -0.65% 9.88% 15.17% 9.65% 8.22% 7.74% 10.75% 4.33% 3.78% 3.80% 2.78% 1.20% 0.77% 0.29%

SH + DR 15% -0.89% 11.90% 18.40% 11.65% 10.06% 9.54% 14.29% 6.17% 5.22% 4.69% 3.80% 1.53% 1.17% 0.43%

Speed limit = 65 MPH Speed limit = 55 MPH
Strategy Name

101_102 102_103 103_104 104_105 105_106 106_107 107_108 108_109 109_110 110_111 111_112 112_113 113_114 114_115

Speed 

Harmonization (SH) -0.07% 0.99% 1.78% 0.42% 1.54% 2.20% 1.85% 1.86% 1.35% 1.94% 0.83% 0.34% 0.25% 0.03%

Dynamic re-routing 

(DR) 5% -0.11% 3.26% 4.65% 3.57% 3.04% 2.61% 2.46% 0.71% 0.75% 0.43% 0.58% 0.40% 0.20% 0.09%

DR 10% -0.22% 4.75% 6.29% 5.30% 5.24% 4.82% 4.24% 1.29% 1.27% 0.69% 0.80% 0.43% 0.37% 0.09%

DR 15% -0.38% 5.46% 7.63% 7.14% 6.75% 6.28% 5.37% 1.73% 1.73% 0.98% 1.32% 0.65% 0.54% 0.14%

SH + DR 5% -0.18% 3.83% 6.10% 3.43% 3.60% 4.00% 4.39% 2.71% 2.06% 2.49% 1.37% 0.50% 0.44% 0.09%

SH + DR 10% -0.28% 4.98% 7.54% 4.97% 4.84% 4.74% 6.10% 3.22% 2.74% 2.69% 1.69% 0.75% 0.51% 0.13%

SH + DR 15% -0.39% 5.82% 8.90% 5.80% 5.42% 5.51% 7.59% 4.02% 3.37% 3.10% 2.15% 0.89% 0.73% 0.23%

Speed limit = 65 MPH Speed limit = 55 MPH
Strategy Name
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Figure 4-8. Single vehicle speed profiles through various recurring congestion mitigation strategies 

Figure 4-9 shows space-time charts for a portion of the morning peak travel. The location and propagation of 
congestion is identified in red. Combining both speed harmonization and dynamic rerouting results in minimal 
disruption to overall traffic flow.  
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Figure 4-9. Space-time charts showing the impact of mitigation strategies as applied to recurring congestion (red zones indicate 
congestion) 

4.2.3.2. Non-recurring Congestion 

No Strategy 

The no strategy reflects the output of the calibrated non-recurring conditions observed on the seed day. 

Speed Harmonization 

A similar approach to speed harmonization as discussed in the recurring section is followed. The developed 
congestion algorithm can start identifying non-recurring congestion in segment B-2 by 6:45 AM and a level 
match (level 4) is achieved by 7:25 AM (Table 4-3). The calibrated seed day simulation model indicated a 7:00 
AM starting point for congestion, shown in Table 4-11.  Speed advisories are again computed for the bottleneck 
and upstream sections based on the speed-based algorithm, Equation 4.6. 
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Table 4-11. Location of incident-related congestion estimated from average section speed on seed day 

 

 

 

𝑢𝑚(𝑘) = 𝑎𝑚  ×  �̅�𝑚 (𝑘)                                                                                                                                                     (4.6) 

Where, 

𝑎𝑚 = established by computing ratio of the posted speed limit to minimum observed speed = 65/35.2 = 1.85 

�̅�𝑚 (𝑘) = (35.2 + 52.5 + 58.9)/3= 48 mph 

𝑢𝑚(𝑘) = speed advisory in bottleneck = 48 x 1.85 = 89 mph ~ 75 mph (capped by the maximum allowable 
speed limit of the facility) 

𝑢𝑚−1(𝑘) = speed advisory upstream of bottleneck = 48 /1.85= 26 mph ~ 25 mph 

 

The established speed advisories are applied in TransModeler. However, as discussed before, only minor 
improvements to TT are observed from this approach. An iterative approach is used to determine the optimum 
speed advisories for greatest TT improvement. The best improvements to TT resulted from the same 
combination of section speed advisories as those of recurring congestion, shown in Table 4-12, applied for a 
duration of one hour.  
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 Table 4-12. Selected speed advisories for incident-related congestion 

Seg ID 102_103 103_104 104_105 105_106 106_107 107_111 

Speed advisory (mph) 55 55 50 45 45 65 

% TT improvement for 5-10 AM traffic 1.71 1.89 1.91 2.16 0.45 2.20 

 

The overall facility wide improvements to TT resulting from speed harmonization for the peak congestion 
period (7 AM to 9 AM) and extended morning period (5 AM to 10 AM) are 1.06% and 1.37%, respectively. 
Section wide breakdown of TT improvements are shown in Table 4-13 and  

 

 

 

 

 

Table 4-14.  

Dynamic Rerouting  

Dynamic rerouting is applied for a one-hour period from the first detection of congestion. Traffic volume is 
aggressively reassigned to the REL in 10%, 20%, and 30% increments. Higher levels of traffic reassignment are 
possible but are deemed to not be practical due to the capacity limitations of the REL. Peak congestion period 
traffic for the facility improved by 4.41%, 8.27%, and 12.36%, respectively. Extended morning period traffic also 
improved by 1.81%, 3.45%, and 5.14%, respectively. Section-wise breakdown of TT improvements, Table 4-13 
and  

 

 

 

 

 

Table 4-14, show significant improvement of traffic conditions close to the incident location.  

Dual Strategies 

The combination of two mitigation strategies is tested by simultaneously implementing speed harmonization 
with three varying increments of traffic rerouting, as before. The same increments used in the dynamic 
rerouting strategy are applied. Peak congestion period traffic for the facility improved by 5.40%, 9.42%, and 
13.49%, respectively. Extended morning period traffic also improved by 3.11%, 4.81%, and 6.51%, respectively. 

A summary of the applied strategies, their intensities, and percentage improvements to incident traffic 
conditions are shown in Table 4-13 and  
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Table 4-14.  

Table 4-13. Summary of incident-related TT improvements during 7 AM – 9 AM by section 

 

 

 

 

 

 

 

Table 4-14. Summary of incident-related TT improvements during 5 AM – 10 AM by section 

 

 
Figure 4-10 shows the speed profiles of a single vehicle traversing through incident-related congestion under 
various mitigation strategies. Speed harmonization coupled with dynamic rerouting resulted in the greatest 
improvement to TTs. This combination, as seen before, proved to be very effective in achieving both TT and 
safety improvements.  

 

101_102 102_103 103_104 104_105 105_106 106_107 107_108 108_109 109_110 110_111 111_112 112_113 113_114 114_115

Speed 

Harmonization (SH) 1.90% 2.00% 1.96% 2.02% 1.30% -2.85% 1.43% 1.96% 0.83% 3.17% 1.14% -0.07% 0.05% 0.02%

Dynamic re-routing 

(DR) 10% 17.84% 12.18% 8.06% 4.84% 4.73% 3.85% 3.73% 1.53% 1.79% 1.33% 1.07% 0.56% 0.19% 0.11%

DR 20% 32.08% 23.65% 15.82% 9.45% 9.17% 7.75% 6.16% 2.69% 3.26% 2.00% 2.23% 0.98% 0.34% 0.22%

DR 30% 43.37% 37.85% 25.20% 14.71% 12.31% 11.67% 9.81% 4.14% 4.83% 3.13% 3.40% 1.57% 0.59% 0.42%

SH + DR 10% 18.20% 13.23% 9.63% 5.81% 6.17% 4.78% 4.30% 3.83% 2.71% 3.49% 1.95% 0.83% 0.38% 0.20%

SH + DR 20% 32.26% 24.53% 17.52% 10.78% 10.71% 9.42% 7.54% 5.13% 4.49% 4.26% 3.11% 1.20% 0.51% 0.36%

SH + DR 30% 43.43% 38.38% 26.55% 15.97% 14.51% 13.23% 11.21% 6.73% 6.17% 5.25% 4.29% 1.84% 0.75% 0.52%

Speed limit = 65 MPH Speed limit = 55 MPH
Strategy Name

101_102 102_103 103_104 104_105 105_106 106_107 107_108 108_109 109_110 110_111 111_112 112_113 113_114 114_115

Speed 

Harmonization (SH) 0.78% 1.71% 1.89% 1.91% 2.16% 0.45% 2.28% 2.41% 1.59% 2.50% 1.12% 0.19% 0.12% 0.10%

Dynamic re-routing 

(DR) 10% 7.42% 5.05% 3.34% 1.96% 1.90% 1.57% 1.57% 0.63% 0.72% 0.54% 0.43% 0.20% 0.05% -0.01%

DR 20% 13.37% 9.87% 6.63% 3.92% 3.84% 3.17% 2.58% 1.16% 1.40% 0.83% 0.94% 0.39% 0.13% 0.06%

DR 30% 18.07% 15.76% 10.53% 6.12% 5.11% 4.81% 4.10% 1.72% 2.00% 1.27% 1.44% 0.65% 0.22% 0.12%

SH + DR 10% 7.56% 6.32% 5.01% 3.58% 4.10% 3.45% 3.41% 3.23% 2.22% 2.50% 1.25% 0.56% 0.26% 0.10%

SH + DR 20% 13.45% 11.06% 8.34% 5.66% 6.00% 5.43% 4.77% 3.79% 3.05% 2.81% 1.84% 0.71% 0.30% 0.16%

SH + DR 30% 18.10% 16.83% 12.10% 7.82% 7.58% 7.00% 6.33% 4.45% 3.74% 3.23% 2.31% 0.97% 0.40% 0.23%

Speed limit = 65 MPH Speed limit = 55 MPH
Strategy Name
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Figure 4-10. Single vehicle speed profiles through various non-recurring congestion mitigation strategies 

Figure 4-11 shows space-time charts for a portion of the morning peak travel during an incident. The 
propagation and intensity of congestion is observed to decrease across Figure 4-11(a) to (d). Combining both 
speed harmonization and dynamic rerouting acts as the best congestion mitigation strategy within the study 
area. 
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Figure 4-11. Space-time charts showing the impact of mitigation strategies as applied to non-recurring congestion 

In conclusion, dual strategies combining speed harmonization and dynamic rerouting provide the most benefit 
within the congested sections and across the entire facility, as shown in Table 4-15. The same combination of 
strategies with varying intensities can be used across different types and levels of congestion i.e., recurring 
(level 2) vs non-recurring (levels 3 and 4). It should be noted that the examined mitigation strategies are 
specific to the study area (Selmon Expressway in Tampa, FL) and other strategies should be considered 
depending on the facility requirements.   

 
Table 4-15. Summary of TT improvements obtained from microsimulation models 

Strategy 7 – 9 AM 5 – 10 AM 
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Congested 
sections (101-108) 

Entire 
facility 

Congested 
sections (101-108) 

Entire 
facility 

Recurring  

i) Speed Harmonization (SH) 0.39% 0.51% 1.24% 1.09% 

ii) Dynamic rerouting (DR) 5% 6.70% 3.84% 2.78% 1.62% 

iii) DR 10% 10.51% 6.15% 4.35% 2.53% 
iv) DR 15% 13.21% 7.82% 5.47% 3.24% 

v) SH + DR 5% 6.03% 3.82% 3.59% 2.49% 

vi) SH + DR 10% 8.68% 5.55% 4.70% 3.19% 

vii) SH + DR 15% 10.71% 7.00% 5.52% 3.80% 
Non-Recurring (incident)  

i) SH 1.11% 1.06% 1.60% 1.37% 

ii) DR 10% 7.89% 4.41% 3.26% 1.81% 
iii) DR 20% 14.87% 8.27% 6.20% 3.45% 

iv) DR 30% 22.13% 12.36% 9.22% 5.14% 

v) SH + DR 10% 8.88% 5.40% 4.78% 3.11% 

vi) SH + DR 20% 16.11% 9.42% 7.82% 4.81% 
vii) SH + DR 30% 23.33% 13.49% 10.82% 6.51% 

 

 

4.2.4. Approach Limitations 

A few limitations of the developed simulation models are discussed below: 

• The relatively low CV penetration rates led to assumptions such as applying TTs from last known time 
periods, thus introducing some errors into the existing conditions and calibrated simulation models. 
However, the benefits of utilizing relatively short TT segments (0.5-mile long) and possibility of creating 
even more precise segments, demonstrate the unparalleled merit of CV-based simulation calibration.     

• Traffic volumes used for the simulation are obtained from the Iteris dashboard (ClearGuide) and are based 
on averages by time of day and day of week. In order to generate 5-minute volume estimates Iteris uses 
the Texas Transportation Institute AADT to volume profile methodology or probe-based data, where 
available (Iteris, 2021). These volume estimates result in the application of more aggressive calibration 
measures to replicate existing conditions that might affect the performance of the applied mitigation 
strategies. 

• The developed simulation model is limited to the Westbound traffic flow on the Selmon Expressway and 
surrounding ramps, without considering impact to surrounding arterials at a meso or macro level. Applying 
mitigation strategies such as dynamic re-routing could potentially negatively impact the normal traffic flow 
along the REL. Including the entire REL (currently modeled as an access ramp only) to the geometry can 
further aid in refining the intensity of the mitigation strategies applied, improving traffic progression and 
reliability across both the upper and lower decks of the freeway.    
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5. Conclusions 
This project sought to develop a robust proactive congestion detection algorithm. Mitigation strategies 
applicable to selected study areas are simulated under recurring and non-recurring congestion to explore any 
improvements to traffic flow and roadway safety. 

The methodology applied to the preparation and fusion of the datasets, especially CV data, prove to be 
efficient in generating the same level of travel time data quality as other more common sources such as 
Bluetooth, even at low CV market penetration. The versatility of BSM data provides great flexibility for travel 
time estimation in more aggregate/shorter segment lengths.  

The validated congestion detection algorithm shows a mean prediction error of 30.2% and is relatively effective 
in proactively predicting the onset of congestion and its levels. However, the process followed to compute the 
prediction error heavily penalizes the algorithm especially in instances where the ground truth cannot be fully 
verified to the nearest 5-minute time period (i.e., time logs from incident reports could be filed as a derivation 
of officer arrival time and not actual crash time). This also applies to the estimation of recurring congestion 
which is based on historical distribution plots and not observed ground truth. The algorithm is expected to have 
an overall lower prediction error in real world applications.  

The developed congestion detection algorithm is robust enough to function using either traditional or CV travel 
time datasets, thus addressing earlier identified research gaps from the literature. This makes implementation 
of the methodology relatively easy for transportation agencies upgrading existing traditional infrastructure or 
those already transitioning to CV technology. To deploy the algorithm, transportation agencies only require 
access to live travel time estimates of the roadway segments, preferably two miles or shorter in length 
depending on agency-specific precision requirements for identifying the congestion location and progression. 
For effective deployment of the congestion detection algorithm in specific locations, optimization of the 
congestion thresholds can be performed using historical travel time data of the facility, where available. 

Finally, this project demonstrated the clear advantage of using CV-based travel time estimates to calibrate 
simulation models over fixed point-based derivations of travel time from spot speeds. While TransModeler was 
the microsimulation tool used in the study, the calibration process utilized universal driver behavioral models 
of car-following and lane changing to ensure replicability across other microsimulation platforms. The ability to 
calibrate simulation models based on individual sections of shorter lengths (less than or equal to 0.5 miles) 
allows for a more detailed replication of real-world conditions. CV technology allows for the possibility of 
deploying multiple mitigation strategies efficiently and in short succession (e.g., CV-based speed advisories), 
without the need for installing additional roadside infrastructure, such as dynamic message signs and variable 
speed limits.   

6. Future Research  
The proposed congestion detection algorithm relies on data from two geographic locations. Adding more 
geographic variability could help further refine the congestion level thresholds and the overall robustness of 
the model. Also, implementing a feedback loop to continually evaluate new datasets from locations where the 
congestion detection algorithm is deployed can aid to train and further improve the accuracy of the established 
congestion level thresholds.  
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Further work could extend the simulation geometry to include multiple alternative route choices in order to 
establish a more holistic impact of congestion intensity and deployed mitigation strategies on these roadways.  

Although this project examined speed harmonization, the implementation approach applied a basic speed-
based equation. A more refined approach that dynamically re-evaluates the intensity of mitigation strategies 
based on dissipation of congestion could provide smoother traffic flow.  

Finally, more research into driver perception of CV-based HMI alerts especially with respect to the time-lag 
before compliance (individual/platoon) with the provided speed or rerouting advisories would provide more 
insights into effective deployment of the congestion mitigation strategies.  
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Appendix A: Algorithm Validation  
 
Table A-1. Recurring congestion manual validation 

Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

2/26/2019 6:40 A Tue 7:55 7:55 1.00 

3/13/2019 7:05 A Wed 6:55 6:55 0.00 

3/5/2019 9:30 A Tue 9:00 9:00 0.00 

3/6/2019 8:15 A Wed 7:20 7:20 0.00 

3/25/2019 7:40 A Mon NA NA 1.00 

4/1/2019 6:50 A Mon 7:15 7:15 0.39 

4/8/2019 7:35 A Mon 7:30 7:30 0.00 

4/10/2019 8:00 A Wed 7:00 7:00 0.00 

4/18/2019 6:30 A Thur 6:05 6:05 0.00 

5/6/2019 8:10 A Mon 8:00 8:00 0.00 

5/13/2019 7:40 A Mon 8:05 8:05 0.39 

5/15/2019 6:20 A Wed 6:05 6:05 0.00 

5/20/2019 9:10 A Mon 8:05 8:05 0.00 

6/4/2019 6:25 A Tue 7:25 7:25 1.00 

6/21/2019 6:10 A Fri NA NA 1.00 

6/28/2019 8:50 A Fri 7:50 7:50 0.00 

7/2/2019 7:20 A Tue 6:15 6:15 0.00 

7/9/2019 8:30 A Tue 7:50 7:50 0.00 

7/22/2019 5:45 A Mon 6:50 6:50 1.00 

8/7/2019 7:50 A Wed 8:10 8:10 0.33 

8/14/2019 7:40 A Wed 7:30 7:30 0.00 

8/15/2019 6:45 A Thur 6:55 6:55 0.21 

8/27/2019 7:25 A Tue NA NA 1.00 

8/28/2019 7:45 A Wed 7:40 7:40 0.00 

9/6/2019 7:05 A Fri 8:25 8:25 1.00 

9/9/2019 9:10 A Mon 8:45 8:45 0.00 

9/19/2019 8:20 A Thur 8:45 8:45 0.39 

10/4/2019 7:15 A Fri 7:05 7:05 0.00 

10/16/2019 9:10 A Wed 9:20 9:20 0.21 

10/22/2019 6:45 A Tue 6:45 6:45 0.00 

11/14/2019 6:35 A Thur 6:00 6:00 0.00 

12/3/2019 7:05 A Tue NA NA 1.00 

12/11/2019 7:30 A Wed 7:35 7:35 0.13 

12/13/2019 6:25 A Fri 6:00 6:00 0.00 

1/6/2020 7:15 A Mon 7:30 7:30 0.28 
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Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

2/21/2019 6:35 B-1 Thur 7:50 7:50 1.00 

3/4/2019 6:40 B-1 Mon 6:50 6:50 0.28 

3/7/2019 7:15 B-1 Thur 6:55 6:55 0.00 

3/21/2019 7:00 B-1 Thur 6:05 6:05 0.00 

3/27/2019 7:05 B-1 Wed 6:55 6:55 0.00 

4/2/2019 7:05 B-1 Tue 6:50 6:50 0.00 

4/29/2019 7:15 B-1 Mon 7:30 7:30 0.28 

5/6/2019 6:55 B-1 Mon 7:05 7:05 0.21 

6/20/2019 7:00 B-1 Thur 6:55 6:55 0.00 

6/26/2019 5:30 B-1 Wed 7:25 7:25 1.00 

7/2/2019 6:35 B-1 Tue 6:50 6:50 0.28 

7/15/2019 6:20 B-1 Mon 7:50 7:50 1.00 

7/17/2019 7:20 B-1 Wed 7:45 7:45 0.39 

8/19/2019 7:10 B-1 Mon 7:25 7:25 0.28 

8/22/2019 7:25 B-1 Thur 7:30 7:30 0.13 

9/4/2019 7:05 B-1 Wed 7:50 7:50 1.00 

9/23/2019 7:05 B-1 Mon 7:25 7:25 0.33 

10/18/2019 8:40 B-1 Fri 8:00 8:00 0.00 

10/30/2019 6:50 B-1 Wed 7:15 7:15 0.39 

11/4/2019 6:10 B-1 Mon 6:00 6:00 0.00 

11/21/2019 7:25 B-1 Thur 7:40 7:40 0.28 

11/26/2019 7:10 B-1 Tue NA NA 1.00 

12/5/2019 7:00 B-1 Thur 6:50 6:50 0.00 

12/6/2019 8:35 B-1 Fri 7:45 7:45 0.00 

12/13/2019 7:20 B-1 Fri 7:15 7:15 0.00 

12/23/2019 7:40 B-1 Mon 8:45 8:45 1.00 

12/30/2019 8:25 B-1 Mon 7:25 7:25 0.00 

1/9/2020 7:30 B-1 Thur 6:40 6:40 0.00 

1/15/2020 6:35 B-1 Wed 8:15 8:15 1.00 

1/21/2020 7:40 B-1 Tue 7:25 7:25 0.00 

1/24/2020 7:55 B-1 Fri 7:15 7:15 0.00 

1/30/2020 6:55 B-1 Thur 7:25 7:25 1.00 

2/6/2020 5:50 B-1 Thur NA NA 1.00 

2/7/2020 6:20 B-1 Fri 6:40 6:40 0.33 

2/13/2020 7:15 B-1 Thur 7:15 7:15 0.00 

2/22/2019 6:55 B-2 Fri 7:15 7:15 0.33 

3/5/2019 7:30 B-2 Tue 6:50 6:50 0.00 

3/18/2019 7:40 B-2 Mon 7:50 7:50 0.21 

3/26/2019 6:25 B-2 Tue 7:20 7:20 1.00 
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Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

4/1/2019 7:20 B-2 Mon 7:30 7:30 0.21 

4/5/2019 6:30 B-2 Fri 6:15 6:15 0.00 

4/9/2019 7:20 B-2 Tue 7:15 7:15 0.00 

4/25/2019 6:55 B-2 Thur 6:45 6:45 0.00 

5/3/2019 6:55 B-2 Fri 7:10 7:10 0.28 

5/14/2019 6:10 B-2 Tue 6:35 6:35 0.39 

5/28/2019 5:25 B-2 Tue 6:50 6:50 1.00 

6/6/2019 8:00 B-2 Thur 7:30 7:30 0.00 

6/26/2019 7:40 B-2 Wed 7:20 7:20 0.00 

7/2/2019 6:45 B-2 Tue 6:50 6:50 0.13 

7/15/2019 6:40 B-2 Mon 7:40 7:40 1.00 

7/24/2019 7:10 B-2 Wed 7:15 7:15 0.13 

7/30/2019 7:25 B-2 Tue 7:15 7:15 0.00 

8/12/2019 7:05 B-2 Mon 7:10 7:10 0.13 

8/20/2019 7:35 B-2 Tue 7:15 7:15 0.00 

8/23/2019 7:35 B-2 Fri 7:15 7:15 0.00 

9/4/2019 7:35 B-2 Wed 7:20 7:20 0.00 

9/5/2019 7:00 B-2 Thur 6:50 6:50 0.00 

9/23/2019 7:15 B-2 Thur 7:10 7:10 0.00 

10/14/2019 6:15 B-2 Mon 7:55 7:55 1.00 

10/15/2019 7:30 B-2 Tue 6:55 6:55 0.00 

11/1/2019 7:20 B-2 Fri 7:30 7:30 0.21 

11/15/2019 7:10 B-2 Fri 7:00 7:00 0.00 

12/10/2019 6:10 B-2 Tue 6:55 6:55 1.00 

1/14/2020 6:55 B-2 Tue 7:00 7:00 0.13 

1/28/2020 6:45 B-2 Tue 6:35 6:35 0.00 

 Mean Error 0.297 
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Table A-2. Weather-related congestion manual validation 

Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

3/12/2019 7:10 A Tue 6:50 6:50 0.00 

5/9/2019 8:00 A Thur 7:25 7:30 0.00 

5/10/2019 16:40 A Fri 16:10 16:10 0.00 

7/10/2019 10:00 A Wed 10:05 10:05 0.13 

8/12/2019 9:10 A Mon 9:00 9:00 0.00 

8/21/2019 5:40 A Wed NA NA 1.00 

8/23/2019 18:00 A Fri 17:30 17:30 0.00 

8/29/2019 9:00 A Thur 8:05 8:05 0.00 

9/18/2019 18:00 A Wed NA NA 1.00 

10/29/2019 15:50 A Tue 15:50 15:50 0.00 

12/12/2019 17:40 A Thur 17:45 17:45 0.13 

1/16/2020 9:20 A Thur 8:40 8:40 0.00 

1/30/2020 7:00 A Thur 7:20 7:20 0.33 

2/13/2020 15:30 A Thur 15:25 15:25 0.00 

2/20/2020 16:20 A Thur 15:00 15:00 0.00 

2/26/2019 10:30 B-1 Tue NA NA 1.00 

3/12/2019 6:00 B-1 Tue 5:55 5:55 0.00 

4/5/2019 6:50 B-1 Fri 6:15 6:15 0.00 

4/12/2019 19:00 B-1 Fri NA NA 1.00 

5/31/2019 15:20 B-1 Fri NA NA 1.00 

6/12/2019 14:15 B-1 Wed NA NA 1.00 

7/12/2019 9:30 B-1 Fri 9:20 9:20 0.00 

7/17/2019 13:40 B-1 Wed 13:25 13:30 0.00 

8/15/2019 10:30 B-1 Thur 10:10 10:10 0.00 

8/14/2019 6:40 B-1 Wed 6:50 6:50 0.21 

11/8/2019 17:50 B-1 Fri NA NA 1.00 

11/14/2019 6:10 B-1 Thur 6:00 6:00 0.00 

12/23/2019 15:30 B-2 Mon NA NA 1.00 

1/7/2020 9:20 B-2 Tue 9:00 9:00 0.00 

1/23/2020 7:10 B-2 Thur 6:45 6:45 0.00 

3/1/2019 7:10 B-2 Fri 6:55 6:55 0.00 

3/27/2019 15:20 B-2 Wed 15:45 15:45 0.39 

4/12/2019 17:40 B-2 Fri 17:45 17:45 0.13 

5/9/2019 16:30 B-2 Thur NA NA 1.00 

5/15/2019 6:20 B-2 Wed 6:00 6:00 0.00 

5/17/2019 6:20 B-2 Fri 6:00 6:00 0.00 

6/3/2019 6:35 B-2 Mon 6:50 6:50 0.28 



 

 

 

 
62 

Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

7/5/2019 12:40 B-2 Fri NA NA 1.00 

7/10/2019 5:30 B-2 Wed 7:05 NA 1.00 

7/26/2019 14:05 B-2 Fri NA NA 1.00 

8/7/2019 16:55 B-2 Wed 17:05 17:05 0.21 

9/25/2019 21:30 B-2 Wed NA NA 1.00 

11/18/2019 7:00 B-2 Mon 7:10 7:10 0.18 

12/9/2019 9:00 B-2 Mon 8:55 8:55 0.00 

1/29/2020 8:00 B-2 Wed 7:15 7:15 0.00 

 Mean Error 0.333 

 
 
Table A-3. Non-recurring congestion manual validation 

Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

3/11/2019 10:30 A Mon NA 10:30 0.00 

3/13/2019 15:25 A Wed 15:25 15:30 0.13 

3/18/2019 18:05 A Mon 18:10 18:15 0.30 

3/28/2019 6:50 A Thur 6:50 6:55 0.13 

3/21/2019 5:55 A Thur 6:05 6:10 0.36 

4/8/2019 11:45 A Mon 11:45 11:50 0.13 

4/15/2019 9:55 A Mon 10:10 NA 0.50 

4/24/2019 9:25 A Wed 9:30 9:30 0.22 

5/1/2019 17:50 A Wed 17:55 17:55 0.22 

5/14/2019 16:20 A Tue 16:25 16:25 0.22 

6/5/2019 7:45 A Wed 7:50 7:55 0.27 

6/21/2019 21:00 A Fri 21:10 NA 0.47 

7/22/2019 12:05 A Mon 12:15 12:20 0.36 

8/12/2019 17:05 A Mon 17:05 17:10 0.13 

8/23/2019 17:25 A Fri 17:30 17:30 0.22 

9/3/2019 13:05 A Tue 13:05 13:05 0.00 

9/18/2019 9:15 A Wed 9:20 9:20 0.22 

10/14/2019 18:30 A Mon 18:30 18:30 0.00 

11/4/2019 14:45 A Mon 14:50 14:50 0.22 

11/26/2019 7:25 A Tue 7:20 7:30 0.11 

12/3/2019 15:25 A Tue 15:30 15:30 0.22 

12/13/2019 9:25 A Fri 9:25 9:25 0.00 

12/20/2019 13:05 A Fri 13:05 13:05 0.13 

1/7/2020 7:25 A Tue 7:30 7:30 0.22 

1/22/2020 14:05 A Wed 14:10 14:10 0.22 
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Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

3/8/2019 12:35 B-1 Fri NA NA 1.00 

4/2/2019 15:00 B-1 Tue NA NA 1.00 

4/25/2019 14:35 B-1 Thur 14:35 14:40 0.13 

5/3/2019 16:55 B-1 Fri 17:00 17:00 0.22 

6/21/2019 9:30 B-1 Fri 9:40 9:45 0.33 

6/24/2019 17:25 B-1 Mon NA NA 1.00 

7/2/2019 21:05 B-1 Tue 21:20 NA 0.50 

7/9/2019 5:55 B-1 Tue 6:05 6:05 0.32 

7/15/2019 7:20 B-1 Mon 7:50 NA 0.08 

8/8/2019 19:20 B-1 Thur 18:50 19:00 0.00 

8/26/2019 6:40 B-1 Mon 6:55 NA 0.50 

9/4/2019 15:45 B-1 Wed NA NA 1.00 

9/12/2019 11:20 B-1 Thur 11:35 NA 0.50 

9/24/2019 20:00 B-1 Tue 20:10 NA 0.47 

10/8/2019 6:05 B-1 Tue 6:00 NA 0.17 

10/9/2019 11:05 B-1 Wed 10:30 10:30 0.00 

10/22/2019 20:05 B-1 Tue 20:10 NA 0.44 

10/25/2019 8:10 B-1 Fri 8:10 8:10 0.00 

11/8/2019 6:25 B-1 Fri 6:35 NA 0.22 

11/19/2019 9:30 B-1 Tue 9:35 9:35 0.22 

11/27/2019 17:05 B-1 Wed NA NA 1.00 

12/3/2019 20:15 B-1 Tue 20:30 NA 0.50 

1/3/2020 16:25 B-1 Fri 16:30 16:30 0.22 

2/4/2020 14:35 B-1 Tue 14:35 14:35 0.00 

2/7/2020 10:55 B-1 Fri 11:05 11:10 0.36 

4/22/2019 7:55 B-2 Mon 6:55 7:05 0.00 

4/22/2019 21:50 B-2 Mon 22:05 NA 0.50 

2/28/2019 6:25 B-2 Thur 6:00 6:40 0.06 

3/21/2019 7:55 B-2 Thur 7:35 7:35 0.00 

3/26/2019 20:45 B-2 Tue NA NA 1.00 

5/23/2019 7:45 B-2 Thur 7:05 7:15 0.00 

6/7/2019 16:50 B-2 Fri 16:55 16:55 0.22 

6/11/2019 7:20 B-2 Tue 7:05 7:15 0.00 

6/17/2019 7:55 B-2 Mon 7:40 7:40 0.00 

6/24/2019 8:00 B-2 Mon 7:55 8:05 0.06 

7/10/2019 17:50 B-2 Wed 17:50 17:55 0.08 

7/17/2019 7:40 B-2 Wed 7:40 7:40 0.00 

7/22/2019 13:15 B-2 Mon NA NA 1.00 

8/12/2019 10:00 B-2 Mon 9:25 10:15 0.05 
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Date 
Confirm 

Time 
Seg ID 

Day of 
Week 

Prediction 
Start Time 

Level Match 
Time 

Prediction 
Error 

8/21/2019 17:25 B-2 Wed NA NA 1.00 

9/10/2019 20:10 B-2 Tue NA NA 1.00 

9/11/2019 6:30 B-2 Wed 6:45 6:45 0.40 

9/20/2019 13:50 B-2 Fri 13:55 14:00 0.27 

10/4/2019 6:30 B-2 Fri 6:50 6:55 0.50 

10/14/2019 8:15 B-2 Mon 7:55 8:00 0.00 

10/18/2019 10:30 B-2 Fri 10:30 10:35 0.08 

11/4/2019 13:45 B-2 Mon 14:00 NA 0.50 

11/22/2019 20:00 B-2 Fri NA NA 1.00 

12/9/2019 18:50 B-2 Mon NA NA 1.00 

1/9/2020 6:30 B-2 Thur 6:35 6:40 0.27 

 Mean Error 0.322 
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Appendix B: Recurring Calibration 
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Figure B-1. Section wise comparison of observed and calibrated TTs   
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Appendix C: Non-recurring Calibration 
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Figure C-1. Section wise comparison of observed and calibrated TTs   
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The National Institute for Congestion Reduction (NICR) will emerge as a 

national leader in providing multimodal congestion reduction strategies 

through real-world deployments that leverage advances in technology, 

big data science and innovative transportation options to optimize the 

efficiency and reliability of the transportation system for all users. Our 

efficient and effective delivery of an integrated research, education, 

workforce development and technology transfer program will be a model 

for the nation. 
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